Polytechnic
 INSTITUTE OF NEW YORK

CATALOG 1981-1983

CONTENTS

Polytechnic Institute of New York 7
Campuses and Facilities 9
Admissions, Financial Aid, Registration 12
Tuition 14
Financial Aid 15
Registration 19
Degree Requirements 23
Curricula 27
Academic Policies 29
Student Services and Activities 35
Explanation of Course Descriptions 43
Courses of Study
Bioengineering 44
Chemical Engineering 48
Chemical Physics 57
Chemistry 59
Civil and Environmental Engineering 68
Computer Science 81
Cooperative Education 90
Electrical Engineering 92
Electrophysics 112
Energy Program 114
Humanities and Communications 119
Industrial Engineering 132
Information Management 143
Interdisciplinary Studies 147
LifeSciences 148
Management 156
Mathematics 167
Mechanical and Aerospace Engineering 80
Metalturgy: Physical and Engineering 195
Military Science 202
New York University/Polytechnic Cooperative Program 205
Nuclear Engineering 207
Operations Research 212
Physical Education 222
Physics 223
Polymer Science and Engineering 231
Social Sciences 234
Statistics 246
System Engineering 247
Transportation Management 249
Transportation Planning and Engineering 252
Corporation 262
Administration 263
General Index 264

POLYTECHNIC INSTITUTE OF NEW YORK

Polytechnic Institute of New York is the largest and most extensive technological institution in Greater New York. The second oldest technological university in the nation, Polytechnic was founded in 1854. It was at Polytechnic that pioneering research was conducted in such important fields as x-ray scatterings, radar, microwaves, plastics and re-entry vehicles for the space program. Graduates have made important breakthroughs in such research areas as television broadcast technology, nuclear fission, bridge construction and dental anesthetics.
In 1973 Polytechnic absorbed New York University's School of Engineering and Science. Today, Polytechnic has campuses in Brooklyn and Farmingdale (Long Island), and a graduate center in White Plains.

A coeducational, independent university, Polytechnic has an enrollment of nearly 5,000 graduate and undergraduate students. The engineering enrollment (bachelor's, master's and doctoral) is first in New York State and one of the largest in the nation. About 11 percent of the student body are women, 37 percent are non-white and 11 percent are from abroad.

The undergraduate program includes courses leading to 16 degrees in engineering, science and the humanities. The graduate program in science, engineering and management offers 24 master of science degrees; 11 engineer degrees; and 22 Ph.D. degrees.

Traditionally, Polytechnic has been strong in chemistry, physics, mathematics and the major engineering dis-ciplines-chemical, electrical, civil, mechanical and aerospace. It also has a number of specialized departmants and programs such as computer science, metallurgy, nuclear engineering, and transportation engineering.
Many of Polytechnic's 225 faculty members are nationally and internationally recognized for their achievements as teachers, scholars and researchers. The Polytechnic faculty conducts over $\$ 6$ million of research annually.

Conferring more than 400 baccalaureate degrees and more than 800 graduate degrees annually, Polytechnic now has nearly 30,000 alumni around the world. In 1981, more than 95 percent of Polytechnic graduates who sought employment found positions in their tields.

For detailed information, write the Office of Admissions or Office-of Graduate Studies, Polytechnic Institute of New York, 333 Jay Street, Brooklyn, N.Y. 11201.

HISTORY

The two engineering colleges that merged in 1973 to become Polytechnic Institute of New York have roots in New York City going back to the same year. In 1854, the Brooklyn Collegiate and Polytechnic Institute received its charter from the New York State Board of Regents. That same year New York University established its school of civil engineering and architecture. Both schools began instruction in 1855. And in 1973, the inheritors of these traditions joined forces to form a single institution.

In 1869 the Board of Regents authorized Polytechnic's collegiate department to confer bachelor of science and bachelor of arts degrees, the first of which were awarded in 1871. Polytechnic Institute of Brooklyn, the name given to the school in 1889, offered master of science degrees as early as 1901. The graduate program was extended to the evening session in the 1920's, and the first Ph.D. degrees were given in 1935. The first engineer degree-between the master's and the Ph.D. on the acadernic scale-was awarded in 1970.

Dr. George Bugliarello, the first president of the merged institution, assumed office in 1973. Before his election as president of Polytechnic Institute of New York, Dr. Bugliarello had been Dean of Engineering at the University of Illinois at Chicago Circle, where he also served as Professor of Biotechnology and Civil Engineering. He received the degree of Dr. Ing. (summa cum laude) from the University of Padua, and the Sc.D. degree from the Massachusetts Institute of Technology in 1959. His books and research publications are concerned with bioengineering, fluid mechanics, computer languages and social technology.

PURPOSE

At Polytechnic, the scientific orientation of the curricula begins with a common freshman year. Here, new approaches in the teaching of mathematics, chemistry and physics provide the solid basis for the specialization that comes in varying degrees during the following three years.

No longer is it possible to isolate science and engineering, to teach engineering design primarily as an "art." Nevertheless, fundamental differences in attitude distinguish the professions of science and engineering.

Scientific exploration is directed toward accumulation of factual knowledge and the understanding of the basic forces and phenomena of the world. Engineering, on the other hand, has been defined by the Accreditation Board for Engineering and Technology as "the profession in which a knowledge of the mathematical and natural sciences gained by study, experience, and practice is applied with judgment to develop ways to utilize economically the materials and forces of nature for the progressive well-being of mankind."

The humanities and social sciences are well established at Polytechnic, partly because of the original nature of the institute. A minimum of one-sixth of the total course work is devoted to literature, economics, history and modern languages. This area is specifically designed so the scientist and engineer will be prepared for the broader responsibilities that will come with career advancement. In addition, those who wish to do so may acquire a bachelor's degree in either humanities (with concentration in humanistic studies or communications) or in social sciences (history, economics or behavioral science).

The evening session at Polytechnic allows the student unusual latitude in adjusting a program to the realities of outside employment.

Polytechnic is accredited by the Middle States Association, the New York State Board of Regents and various protessional organizations. While the undergraduate chemistry program is approved by the American Chemical Society, the Accreditation Board for Engineering and Technology accredits the undergraduate programs in aerospace, chemical, civil, electrical, industrial, mechanical and metallurgical engineering.

Although most undergraduate students live in New York City and surrounding communities, there are many who come from outside the state. The graduate programs draw students from all over the world, another indication of Polytechnic's reputation in engineering and science.

FACULTY

The faculty originates, organizes and approves all curricula taught at Poiytechnic. Faculty members meet with students in lectures, seminars, laboratories and on field trips; they advise and examine students to determine established standards of achievement.
The faculty is also involved in non-teaching activities, conducting research. Many are also authors of textbooks used throughout the United States. Polytechnic students therefore have daily contact with recognized professionals who are making significant and continuing contributions to their professions.

ALUMNI

The Polytechnic Alumni Association promotes the welfare of Polytechnic and the individual alumna and alumnus. As the needs and interests of the alumni change, the responsibilities and objectives of the Alumni Association atso change. It is today primarily a service organization for all alumni, particularly in the area of continuing education and professional job placement and new student recruitment. While fellowship is a very important aspect of the Association's activities, it is a by-product of the service programs for alumni.
The Alumni Association sponsors the annual Freshman Round-up where incoming students meet recent graduates. Panel discussions, led by career alumni, highlight two yearly career conferences when students meet with alumni to discuss problems they may face when they enter the business world.

The Alumni Association has established a Student Auxiliary Committee within the structure of the Association. This all-student committee works closely and meets regularly with the Association's Board of Directors to promote liaison between alumni and students, to develop programs whereby student/alumni mutual interests may be more fully realized, and to acquaint students with benefits to be derived by their later participation as alumni in the Association's services and programs. Alumni residing outside the New York City area have formed Poly Groups, providing opportunities for informal gatherings. Wherever they meet, they repre sent Polytechnic to the community.

Periodically, the Alumni Association Office, located at Polytechnic, publishes a roster showing the location and occupation of all known alumni. Polygraphs the Association's newspaper, is published four times yearly to provide alumni with recent information concerning the activities of the Association and Polytechnic.

Scholarships are provided annually by the Association for students outstanding in student leadership and athletics. Special awards are presented to the student who is most proficient in each Polytechnic sport, in military service and in student government.

The services of the Association are available to all through the Alumni Office and its director. Membership in the Association is automatic upon graduation, with classes represented on the Board of Directors through their elected representatives.

CAMPUSES AND FACILITIES

THE CAMPUSES

BROOKLYN CAMPUS

Polytechnic's Brooklyn campus is at 333 Jay Street in downtown Brooklyn. This area is criss-crossed by public transportation lines and is accessible from any part of New York City, Long island, New Jersey and Connecticut.

Because of Polytechnic's central location, its students have at their disposal the vast cultural, political, and technological assets of the metropolis. In effect, Greater New York is Polytechnic's campus.

Rogers Hall, named after Harry Stanley Rogers, Polytechnic's fifth president, is the main building. It houses faculty and administrative offices, classrooms, laboratories and the main library. The Administration Building contains administrative and faculty offices, the Office of Dean of Student Life and the Admissions, Bursar's and Registrar's Offices.

William H. Nichols Hall, Johnson and Bridge Streets, houses the placement office, research activities, laboratories, offices and classrooms.

The Student Center, located at 311 Bridge Street, housing cafeteria, lounges, game room and student offices, is the focal point for student extracurricular activities. The building is open Monday to Friday with facilities available to student groups at other times by reservation. Also in the Student Center are the Polytechnic stu-dent-run radio station, yearbook, newspaper and student govemment offices.

LONG ISLAND CAMPUS

The Long Island Campus, Route 110, Farmingdale was opened in the fall of 1961 for graduate study and research in response to the educational needs of Nassau and Suffoik Counties with their many technological industries. Located on 25 acres of land a half mile east of the Nassau-Suffoik border, the facility consists of four principal buildings and two ancillary research structures.

In 1974, fuil-time undergraduate programs in four engineering disciplines were introduced to the offerings of the campus. In 1980, two more undergraduate engineering programs were added.

The Main Administration Building contains classrooms, a cafeteria, an auditorium, conference and meeting rooms, a student lounge, faculty and administration offices and laboratories for research. Areas of research include electromagnetics, wave propagation, spacescience radiophysics, quantum electronics, modern optics, laser techniques, high-frequency solid-state pheno mena and devices, microwaves, antennas and ultrasonics. This building also includes a scienceengineering library with a capacity of 25,000 volumes of periodicals and reference works specifically selected to support the courses and research conducted at the campus.

Preston R. Bassett Research Laboratory contains laboratories for research in gas dynamics, aerophysics, plasma physics and ultrahigh power microwaves, as well as teaching laboratories.

Grumman Hall, the student center, houses a lounge, the rathskellar, game room, locker rooms, a dark room, bookstore, student organization offices and exercise room.

The Aerodynamics Test Building, Propulsion Research Laboratory and a Residence Hall complete this complex.

WESTCHESTER GRADUATE CENTER

In response to the educational needs of graduate scientists, engineers and managers employed at the many high-technology companies on the Lower Hudson Valley and in Southern Connecticut, Polytechnic has established late afternoon and evening graduate programs at White Plains. It offers graduate degree programs in civil

POLYTECHNIC INSTITUTE
 OF NEW YORK
 CAMPUS LOCATIONS

Brookjy Campus

333 Jay Street, Brookiyn, New York 11201 (212) 643-5000

Long Island Campus
Route 110, Farmingdale, New York 11735
(516) 694-5500

Westchester Center
456 North Street, White Plains, New York 10603 (914) 949-1775
engineering, computer science, economic systems, electrical engineering, and management. Oiher graduate courses offered inciude chemistry, energy policy, environmental engineering, industrial engineering and metallurgical engineering.

The Westchester Graduate Center at 456 North Street, White Plains, includes classrooms, computer terminal room and the Richard Laster Library Lounge.

FACILITIES

LIBRARIES

Acquiring, storing, retrieving and making available recorded knowledge, in all its forms and vast quantity, is the major function of the Polytechnic libraries. Its services are geared to assist all students to cope with our increasingly complex information/data environment.

Spicer Memorial Library, located on the first floor of Rogers Hall, is the center of Polytechnic's library system and contains one of the best collections of technical and scientific literature in the metropolitan area. The library also includes materials for research in the humanities, the social sciences and management. It contains more than 260,000 volumes, subscribes to 1,200 periodicals, has a half-million microforms and maintains a government document collection.

The Long Island Campus at Farmingdale is served by a library supporting its undergraduate, graduate and research programs.

The new Richard Laster Library Lounge was dedicated at the Westchester Graduate Center in the spring of 1979. Its collection feflects the areas of academic concentration at Westchester.

A highly trained and experienced staff of librarians and information specialists offers a wide range of reference assistance, classroom instruction, individual counseling, publications, referral, literature-searching and computerized information retrieval services. Through its participation in a number of cooperative arrangements and regional networks, access is available to the vast library resources of the metropolitan area, the state and the nation. Students are encouraged to visit the reference desk frequently to discuss their information needs.

COMPUTER CENTER

Polytechnic maintains a computer center responsive to its educational and administrative needs. Located in Rogers Hall, it is available to faculty and students for use in course work and research.

The main computing facility consists of an IBM 360/65 with 1,000,000 bytes of core memory, nine 3330 type disk drives holding upward of $900,000,000$ bytes of information, four magnetic tape drives, two card readers, and two 1100 -line-per-minute printers.

The Farmingdale campus computing facility consists qf a Data 100 -Model 74 remote batch terminal with one 450-line-per-minute printer and one 400 -card-per-minute reader.

The Data 100 is connected to the IBM 360/65 vla a highspeed data communićations line.

Persons using the center's batch-processing capability may use languages such as FORTRAN IV, PL1, WATFIV, PUC, ICES, NASTRAN, SIMSCRIPT, GPSS, CSMP, ECAP and many others.

Time-sharing services for the academic and research users are provided at all three campus locations, utilizing a Digital PDP $11 / 70$ computer running PWB/UNIX* located at Brooklyn.

In addition to the large 360/65 and PDP 11/70, a minicomputer laboratory housing various minicomputers and individual small computers, is also used on specific research andfor laboratory work and are used for interdisciplinary research carried out by the various centers within Polytechnic.

CENTER FOR URBAN
 ENVIRONMENTAL STUDIES

The Center for Urban Environmental Studies (CUES), established in 1967, initiates and coordinates programs of research and instruction relating to the interaction between man and his environment. It seeks to apply technology to the solution of complex problems common to metropolitan areas and acts as a focus for interdisciplinary studies related to the urban environment.

Current research programs at Polytechnic, sponsored by government, industry, and private foundations, are in housing, building codes, energy conservation, air and water poilution control, solid waste disposal, water resources, fire satety, flood control, building technology, delivery of health services, and urban planning.

Since Polytechnic offers degree programs not only in engineering and science, but also in management, premedicine, the humanities, and the social sciences, the scope of knowledge and capabilities which CUES can bring to bear upon urban environmental studies is unusually large. In addition, specialiy-developed short courses, symposia, and seminars are offered.

Advances in technoiogy arising from CUES projects are often introduced into the curricula of the academic departments of Polytechnic. The environmental programs and projects of CUES are developed in cooperation with the user and are brought into use against real world problems.

[^0]
AEROSPACE RESEARCH LABORATORIES

For research in low-and high-speed fluid dynamics and aerophysics, Polytechnic has one of the world's most advanced and comprehensive university facilities, located in the Preston R. Bassett Aerospace Research Laboratory at Farmingdale. Here engineers and scientists are actively engaged in experimental and theoretical research on problems of aircraft and their flight environment, as well as contemporary problems with similar techniques. Some of these concern undersea vehicles, large scale atmospheric motions, flow processes in engines, the composition of exhaust pollutants, the development of new types of gas-dynamic lasers, and the application of lasers to flow problems.

A broad program which deals with advanced problems in the aerospace sciences, both theoretical and experimental, is carried on by the faculty, graduate students, honor undergraduates, and associated research staff. These efforts, and corresponding structural and propulsion programs, are aided substantially by the support of governmental agencies such as the Department of Defense, the individual armed services, the National Science Foundation, and the New York State Science and Technology Foundation.

Facilities are at hand for studies of jet mixing and chemically reacting flow (e.g., combustion) of heated and unheated gases and gas mixtures, including air hydrogen, and carbon dioxide. Sophisticated instruments and recording and data reduction equipment, including digital computers, are employed in connection with these facilities, while complete instrument and machine shops are important adjuncts.

MICROWAVE RESEARCH INSTITUTE

The internationally renowned Microwave Research institute (MRI) was founded at Polytechnic in 1943 in response to wartime needs for new types of microwave components for radar applications. After World War II, the Institute continued to achieve stature under the leadership of its founder and first director, Dr. Ernst Weber. In collaboration with the academic departments, MRI has helped educate more microwave engineers than any other institute in the country.

In recent years, MRI has broadened the scope of its research activities to include the full range of topics encompassed by the broad term electronics. These activities include such seemingly diverse subjects as lasers, plasma physics, space radio-physics, x-rays, acoustics, wave propagation, microwave antennas, solid state materials, communication theory, control systems and image processing.

Through MRI, Polytechnic participates in the Joint Services Electronics Program, a basic research program sponsored by the federal government. This distinguished program involves only a few specially selected universities, and it places Polytechnic in the company of such schools as Harvard, M.I.T. and Stanford.

POLYMER RESEARCH INSTITUTE

The Polymer Research Institute, a division of the chemistry department, is the oldest academic center of polymer investigations in the United States and enjoys a world-wide reputation. It was founded in 1940 by Dr. Herman F. Mark, who continues as dean emeritus of Polytechnic.

At present, six members of the chemistry department are engaged in teaching courses that deal with macromolecules and supervising research in that field. In addition, the "Polymer Science and Engineering" program is conducted in cooperation with three members of the chemical engineering department specializing in polymer technology.

As a consequence of the long tradition in the teaching of polymer science at the Polytechnic, we may count among our graduates a large proportion of both academic and industrial scientists active in that field.

TRANSPORTATION TRAINING AND RESEARCH CENTER

The Transportation Training and Research Center (TTRC) is concerned with applied research, basic research and training in transportation and related areas. The Polytechnic established TTRC in 1975 to identify its mission in transportation and related areas, and to encourage the interdisciplinary and interdepartmental efforts so necessary in this field.

The TTRC is intended to be the Polytechnic's statement that

- it is committed to such interdisciplinary research, removed from internal departmental concerns
- it will provide the research sponsor with the experience, continuity and achievement record of depth and substance in a single identified internal entity, to the benefit of that sponsor
- it will provide the resources to accomplish the obligated work, in the clearly defined administration of TTRC.

The message is thus performance, responsibility and experience.
The TTRC experience includes

- Transportation Policy Studies
- Traffic Operations and Capacity
- Environmental Impact and Noise
- Transportation Planning and Management
- Transportation Finance

It is proud of its recent work on transportation energy, urban goods, travel training of the retarded, implications of fully accessible systems, minority faculty workshops, short courses and other activities. It has undertaken work for most relevant federal administrations, for state and local governments and with foundation fundings.

ADMISSIONS, FINANCIAL AID, REGISTRATION

GENERAL INFORMATION

Application materials and information on both undergraduate and graduate admission may be obtained by telephoning or writing the admissions offices at either of the following locations:

Brooklyn:

Admissions Office
Polytechnic Institute of New York
333 Jay Street
Brooklyn, N.Y. 11201
(212) 643-2150

Farmingdale:

Admissions Office
Polytechnic Institute of New York
Route 110
Farmingdale, N.Y. 11735
(516) 694.5500

Inquiries about graduate studies at the Westchester Center should be directed to the admissions office at the Brooklyn campus.

Polytechnic's admissions process operates on a rolling basis; preference, however, will be given to applicants who submit all of their documents according to the following timetable:

Full-time undergraduate and graduate study:
October 1-for the spring semester
February 1-for the fall semester
Part-time undergraduate (evening) and graduate study:
December 1-for the spring semester
August 1-for the fall semester
Polytechnic's rolling admissions procedure makes it possible for the admissions office to render a decision on all qualified freshmen and transfer applicants soon after all data have been received. Most candidates for freshman admission apply before February 1 for the fall semester and October 1 for the spring semester and are notified of a decision on admissions usually within four weeks of the receipt of their applications. If accepted for admission, the student should submit an enrollment deposit of $\$ 100$ in order to reserve a place in the entering class. This fee will be applied to tuition and fees for the first semester. This deposit is not refundable after May 1 for the fall semester nor after December 1 for the spring semester.

Students who are admitted for the fall semester may begin their studies in the summer session. Polylechnic offers two summer sessions designed to help students who wish to accelerate or supplement their studies.

Because of the extra time required to process applications from abroad, consideration will not be able to be given to foreign applications received after November 1 for the spring semester, nor after May 1 for the fall semester. All official records along with notarized translations must also be received by these dates.

UNDERGRADUATE ADMISSION

ADMISSION AS A FRESHMAN: EXAMINATIONS

Applicants for admission as freshmen are required to take the Scholastic Aptitude Test of the College Entrance Examination Board. In addition, applicants for engineering, science and pre-medicine should take achievernent tests in English composition, one laboratory science (physics, chemistry or biology) and level I or level 11 mathematics. Humanities and social science applicants should take achievement tests in English composition and any other two achievements, preferably in the humanities. The American College Testing Program may be substituted for the College Entrance Examination Board's examinations.

SECONDARY SCHOOL RECORD

Since the course of studies at Polytechnic is academically rigorous and intellectually challenging, admission to the university is highly competitive. Candidates for admission will be judged primarily for their potential for success at Polytechnic.

The preferred course of studies on the secondary schoot tevel is as follows:

English-4 years
Foreign Language -2 years
Laboratory Science-2 years (physics and chemistry preferred)

Mathematics- 3 years (elementary algebra, geometry, intermediate algebra, trigonometry)
Social Studies-2 years
Electives- 3 years (technical courses such as pre-calculus, calculus, advanced laboratory science, computer science, etc. preferred)

The above course of studies is only a directive, not an absolute requirement; the primary concern of the members of the Admissions Committee is in determining an applicant's potential for success at the university.

EARLY ADMISSION

On occasion, Polytechnic offers early admission to outstanding high school juniors. The program will be arranged so that students will simultaneously satisfy the requirements for a high school diploma while completing the first year of college. Candidates for this program must complete their entrance examinations in their yunior year of high school, and they must present, along with their application, a letter from their principal stating the secondary school's approval of this program.

ADVANCED PLACEMENT

Students may receive college credit by scoring weil on the Advanced Placement Examinations given by the College Entrance Examination Board. A student receiving a grade of 5 will receive degree credit for the specified Polytechnic course(s). If the grade is 3 or 4 , the examination will be reviewed by the department concerned; the student may receive credit, advanced placement without credit, or neither.

Through Polytechnic's College Preview Program, students may gain college credit during the sentor year in high school. Courses are offered to College Preview students at a reduced tuition rate.

ADMISSION AS A TRANSFER STUDENT

Polytechnic weicomes transter students from accredited colleges and universities, provided that they have maintained a strong academic record. Students who have not completed two years of college work should forward to the admissions office a transcript of previous college grades plus the high school transcript and Scholastic Aptitute Test scores. Students who have completed two or more years of college need only submit a college transcript.

If accepted to the university, transfer students should meet with both a member of the admissions statf and a departmental adviser in order to determine which credits are transferable to Polytechnic. Students are required to submit copies of course content from their college catalog for all courses under consideration.

Thirty-four semester hours in approved upper class subjects taken at Polytechnic constitute the minimum residence requirement for transfer students who wish to quality for a bachelor's degree.

Transfer credit is awarded on the basis of current standards and curriculum; therefore, it is possible that credit which Polytechnic had previously awarded for courses taken at other universities may no longer be awarded at this time. All transfer credit evaluations are tentative and conditioned upon the student doing acceptable work at the Polytechnic. A substandard academic performance in a course at the Polytechnic may resuit in a requirement that the student enroll in, and pass, a course for which transfer credit was previously granted.

In certain instances course requirements may be waived for students who demonstrate a sufficient knowledge of a specific course content through either the oral or written examinations employed by the various departments. When course requirements are waived, the student will not receive credit for the course, but may be allowed to substitute a different course, usually one which is more advanced, to satisfy the degree requirement.

The grades for courses for which transfer credit is granted are not included in the computation of the Polytechnic grade point average.

ADMISSION AS AN INTERNATIONAL STUDENT

Proficiency in English is a prerequisite for admission and the Test of English as a Foreign Language (TOEFL) is required of all students whose native language is not English. In addition, international applicants must submit a statement of financial capability before being permitted to enroll. Students holding F - 1 visas must enroll as fuil-time students.

If transfer credit is desired, the candidate must include catalog or syllabus descriptions of courses completed. An official transfer credit evaluation will be done when the student arrives at Polytechnic and meets with a member of the admissions staff and a departmental adviser.

ADMISSION UNDER THE HIGHER EDUCATION OPPORTUNITY PROGRAM

The Higher Education Opportunity Program (HEOP) provides educationai opportunity to economically and educationally disadvantaged students of New York. Economic eligibility is based on federal economic guidelines which take into consideration family size, family members who are students and the farnity income.

To make up prerequisites and courses in which weakness is shown, incoming freshmen in HEOP are required to take six weeks of remedial work before entering.

Transfer students may enter HEOP; however, only students coming from similar programs approved by the HEOP central office are eligible as transfers into HEOP. For further information, contact the director of HEOP at the Brooklyn campus. HEOP is available at the Brooklyn campus only.

ADMISSION AS A PART-TIME STUDENT

Men and women seeking a bachelor's degree in engineering may enroll on a part-time basis at the Brooklyn campus during either the day or evening session, and at the Farmingdale campus during the day session. At the present time, however, only three degrees can be completed during the evening session at the Brooklyn cam-pus-civil, electrical and mechanical engineering. Students enrolled in all other programs during the evening session at the Brooklyn campus will be required to take some courses during the day session in order to complete their degrees.

New transfer students may be admitted on a part-time or full-time basis.

Regulations concerning subject matter requirements, and admissions procedures, are outlined under the section on Admission As A Freshman. However, part-time undergraduate applicants are not normally required to take the entrance examinations.

Following notification of acceptance, the student should contact the adviser in the student's major department. In some cases, the advising may be accomplished during the normal registration period.

Undergraduate students may also register for a maximum of two courses per semester on a non-degree basis. Applications for admission under this special status may nomally be obtained during the week of registration. According to the student's individual interests and needs, a non-degree program may satisfy the requirements of:

Applicants for graduate admission seeking courses to satisfy undergraduate or prerequisite deficiencies

Students seeking specific courses
Students seeking specialized proficiency in a major area of knowledge

Students from other colleges wishing to transfer credit back to their college.

Courses taken on a non-degree basis are not automatically applicable to a degree program. Some courses, however, may be transferred to a degree program with the approval of a departmental adviser.

GRADUATE ADMISSION

To be eligible for admission as a graduate student, an applicant must hold a bachelor's degree from an institution acceptable to Polytechnic. Attention will be given to listings by the Accreditation Board for Engineering and Technology, the American Chemical Society and the various regional accrediting associations. Applicants wishing to enter a graduate field different from the undergraduate field in which they hold a bacheior's degree, or its international equivalent, must anticipate the possibility of some make-up courses for which they may not receive graduate credit.

The previous program of studies must be acceptable, in quality and quantity, to the Polytechnic. Reprints of published articles, copies of scientific patents, photostats of professional reports and other evidences of superior attainment and aptitude for graduate study and research are welcomed.

ADMISSIONS PROCEDURES

In addition to the application form and fee, applicants must have transcripts of any previous undergraduate record (and graduate record) sent directly to the admissions office. Applications for admission should be supported by letfers of recommendation by persons who are well qualified to comment on the applicant's aptitude for graduate study and research. Action on applications will be taken as soon as possible after all supporting papers have been received.

In special instances, qualified admission is given to students who lack some of the prerequisites. These deficiencies must then be removed by prescribed undergraduate courses, which may be taken at Polytechnic or another acceptable institution.

EXAMINATIONS

Consideration is given to an applicant's attainment in the Graduate Record Examination established by the Carnegie Foundation for the Advancement of Teaching. Records of this examination may be presented with the application. information about the examination may be obtained by contacting Educational Testing Service, 20 Nassau Street, Princeton, N.J. All applicants for studies in management are required to take the Graduate Management Admissions Test administered by the same Educational Testing Service.

INTERNATIONAL APPLICATIONS

International applicants applying from outside the United States are required to take the Graduate Record Examination (GRE aptitute tests) and the Test of English as a Foreign Language (TOEFL). Both examinations are administered by the Educational Testing Service faddress above). No final action will be taken until the results of these examinations are received. At the discretion of the director of admissions or the dean of graduate studies, international applicants applying from within the United States may be required to take the examinations. Applicants may facilitate their admission by submitting an official document listing the contents of alt undergraduate courses taken.

International applicants must submit a statement of financial capability before being permitted to enroll.

TUITION

Current information on tuition and fees is available in the course schedule bulietin available prior to the start of each semester. The registrat, bursar, and admissions offices also have up-to-date cost data available.

For fall 1981, full-time tuition for undergraduate students (12 to 20 credits) will be $\$ 2750$ per semester. Students enrolled for fewer than 12 undergraduate credits will pay $\$ 175$ per credit. Full-time tuition for graduate students will be $\$ 2850$ per semester and for part-time graduate courses, $\$ 195$ per unit.

Credits in excess of 20 must be paid for individually at the per credit rate.

The Polytechnic Corporation reserves the right to alter tuition charges with appropriate notice to students. Such alterations are announced in the Polytechnic Course Bulletin, published as supplements to this catalog twice a year: spring and summer/fall.

Tuition covers the instruction costs, use of the libraries and the facilities of the department of student studies. Laboratory fees, ranging from $\$ 10$ to $\$ 65$ per semester are charged for various laboratory classes. Details of these charges are found in the Course Bulletin, since they may vary from semester to semester. Courses requiring lab fees are indicated in the course listings.

Other fees, also detailed in the Course Bulletins, include student activity fees, application and acceptance fees, transcript charges, diploma fees and fees for special examinations and dissertations. Housing charges vary according to the arrangements at Brooklyn and Farmingdale. For details, consult the Office of Dean of Student Life.

The bursar collects all payments that are due the Polytechnic Institute. Full tuition and fee payments are due from all students at the time of registration. Payments should be made by check or money order. Evidence of any financial aid should be presented at registration. (Visa and MasterCard are accepted.)

Deferred Payment

The college does not have a deferred tuition plan. However, outside agencies do provide independent tuition deferment arrangements. Information on these agencies may be obtained through the Polytechnic admissions office. Special education loan programs enabling the family or the student to repay over an extended period in monthly installments are available at many neighborhood banks. Also, any family can qualify for a New York State Higher Education Assistance Loan. Applications are available at local banks. Processing of these loans normally takes from six to eight weeks.

REFUND OF TUITION

Each student, upon registration, assumes obligation for the semester's tuition and other fees. In the event of withdrawal, the right to a refund must not be assumed. Whenever a student withdraws from a course or from ali courses, the tuition charges are adjusted according to the schedule outlined below provided (1) the withdrawai notice is filed within the refund period, (2) it is submitted in writing to the registrar's office and (3) the withdrawat
lowers the student's program to less than 12 credits. Forms for this purpose are available in the Office of the Registrar. The filing of a withdrawal form in the registrar's office is sufficient notification to the school that an adjustment in the records is to be made.

The official withdrawal date is the date the notice of withdrawal is received in the Office of the Registrar, not the last date of class attendance.

A refund must be requested from the bursar's office. If no request is received, the refund amount will be credited to the student's account.

Refund Schedule:

The refund schedule is applicable only during the first four weeks of the semester. If the student makes official withdrawal from all courses at the Institute before the first day of classes, there is no charge; otherwise, the following is applicable.

\quad Withdrawal during	Per Cent
Charge	

Two months after the start of classes must be allowed for the processing of credit and refunds.

Appeals to the refund schedule must be submitted in writing, with documentation of reasons that an exception should be made, to the registrar.

FINANCIAL AID

Polytechnic Institute administers a broad range of scholarship and financial aid programs designed to assist students in pursuing their educational goals. To meet the total cost of education, the student may draw upon available sources (e.g. student income, family income, the Polytechnic Institute and independent and government funds).

All financial aid is limited to the needs of the student as determined by the College Scholarship Service. Students receiving financial assistance from the Polytechnic Institute must notify the director of financial aid of all scholarships, loans, and other forms of educational assistance from sources other than those directly administered by the Office of Financial Aid.

There are three basic types of financial aid:

[^1]About 80 percent of Polytechnic's undergraduate students receive aid in combinations of scholarships, grants, campus jobs, National Direct Student Loans, and Guaranteed Student Loans.

To Apply

1. First-time college students should file the complete Financial Aid Form (FAF), including the supplement, with the College Scholarship Service, Princeton, New Jersey by February 1. (Later applications are considered on a rolling basis as funds are available.)
2. Transfer students should file the FAF by March 1, and request a financial aid transcript from the transferring institution to be sent to the Financial Aid Office at Polytechnic Institute by March 15.

To Renew

1. Request the Financial Aid Form from the Director of Financial Aid in February.
2. File the FAF with the College Scholarship Service, Princeton, New Jersey, by April 1.
3. File the Polytechnic Institute Financial Aid Application with the Office of Financial Aid by April 15. A copy of the parents' 1040 or 1040A and/or the student's 1040 or 1040A tax form for the previous calendar year must accompany this application.

FEDERAL BASED PROGRAMS

Supplemental Educational Opportunity Grants (SEOG)

Application procedures. Awards are determined by Polytechnic's Financial Aid Office. Students must be accepted and have filed the FAF with the College Scholarship Service.

Selection and Allocation. The applicant must be (1) needy, and (2) enrolled at least half-time as an undergraduate student.

Award Schedule. The award ranges from $\$ 200$ to $\$ 2,000$. Normally an award may be paid for up to four years, or up to five years for certain courses of study.

Rights and responsibilities. The student must continue to make satisfactory academic progress.

National Direct Student Loan Program (NDSL)

Selection and allocation. Loans are available to needy students enrolled at least half-time.

Award schedule. Amounts which may be borrowed are $\$ 3,000$ by students who have completed less than two years of a program leading to a bachelor's degree; and $\$ 6,000$ by students who have completed two years toward a bachelor's degree, to include any amount borrowed through an NDSL for the first two years of study.

Rights and responsibilities. The current interest rate, payable during the repayment period, is four percent on the unpaid principal. Repayment begins six months after graduation or after leaving Polytechnic and may extend up to ten years. The minimum monthly payment is $\$ 30.00$. Payment is not required for up to 3 years of active U.S. military service, or service in Peace Corps, VISTA, or similar national program.

College Work-Study Program (CWSP)

Application procedures. Awards are determined by Polytechnic's financial aid office. Students must have filed a Financial Aid Form (FAF). After eligibility is determined, work arrangements are made through the Personnel Office.

Selection and allocation. The applicant must be enrolied at least half-time. Polytechnic provides employment to eligible students who demonstrate financial need. If more students are eligible for the CWSP than there are funds available, preference is given to students with greater need who must earn a part of their educational expenses. Generally, the CWSP is not available to students in their freshman year.

Award schedule. Polytechnic arranges jobs on or off campus with public or private nonprofit agencies. Most assignments average 15 hours per week.

Rights and responsibilities. Satisfactory academic progress must be maintained.

PELL GRANTS
 (formeny, Basic Educational Opportunity Grants)

Application procedures. Applications and other materials are available through the Financial Aid Office. The application should be completed according to directions or a student shouid apply for the Pell Grant by checking the appropriate box on the FAF. A student eligibility report will be sent to the applicant from the Office of Education. Based on an eligibility index or the eligibility report, the amount of the applicant's Pell Grant is determined by the Financial Aid Office. Upon enroilment, funds are paid directly to the Institute in the student's name.

Selection and allocation. The Pell Grant program is an entitlement program. Scholastic accomplishment has no bearing on eligibility. The applicant must be enrolled as an undergraduate at least on a haif-time basis. Financial need for the Pell Grant is determined by a formula developed by the U.S. Office of Education and reviewed annually by Congress. The formula is applied to all applicants, and the student eligibility index is calculated by this formula.

Award schedule. Currently awards range from $\$ 200$ to $\$ 1,800$, but not more than one-half the total cost of attendance. The amount of the award will be affected by costs of attendance and full- or part-time enrollment status. The Pell Grant award does not duplicate state awards.

Rights and responsibilities. The student must continue to make satisfactory academic progress and must not owe refunds on Pell or other awards paid, or be in default on repayment of any student loan. Before receiving payment, the student must sign an affidavit that all money will be used for the costs of attendance only. Most Pell Grant payments are credited directly to the student's Institute account.

Social Security Payments

Application procedures. Application for Social Security payments to children of deceased or disabled parents may be made at any Social Security office. The applicant should present the Social Security card (ff one has been issued), and provide the (1) name and address of the institution; (2) dates of past attendance; (3) student ID number; (4) number of credit hours carried; and (5) full- or part-time status planned for next academic period

Selection and allocation. The applicant must be (1) singie and between 18 and 22 years of age; (2) financially dependent and have a deceased or disabled or retired parent who worked long enough to qualify for Social Security; and (3) enrolled in a post-secondary institution as a full-time undergraduate.

Award schedule. The amount of Social Security benefits may be affected by earnings from employment or selfemployment (if these are greater than $\$ 3,000$ per year). Earnings of a parent may also affect the amount paid to the applicant, even if the applicant is not employed. Payment can continue until the end of the academic period in which the student becomes 22 years of age.

Rights and responsibilities. Several months before the applicant's 18 th birthday, the Social Security Administration will contact those applicants already receiving benefits. So that benefits will continue, the appticant will be instructed on the procedures to foliow upon becoming a full-time post-secondary student. Applicants who become eligible for benefits after reaching 18 must apply for benefits upon beginning full-time study. Eligible appliants who apply late may receive back payments for up to twelve months.

Veterans Administration (VA) Educational Benefits

Application procedures. Applications are available at all VA offices, active duty stations and American embassies and in the Office of the Registrar. Completed forms should be submitted to the nearest VA office.

Selection and allocation. Veterans who served over 180 days between January 31, 1955 and January 1, 1977 and (1) continue on active duty, (2) were honorably discharged at the end of their tour-of-duty, or (3) qualify because of service connected disabilities, are eligible for benefits. Veterans are entitled to benefits for full-time study at an approved post-secondary institution for one and half months for each month of active service (up to 45 months). Eligible veterans who served for 18 continuous
months are entitled to benefits for 45 months of full-time study. In each case, the equivalent in part-time study may be authorized. Eligibility extends for ten years after release from service, but not after December 31, 1989. Children, spouses and survivors of veterans whose deaths or permanent total disabilities were serviceconnected, or who are listed as missing in action may be eligible for post-secondary education benefits under the same conditions as veterans.

Award schedule. Current monthly benefit rates are available through VA offices. Veterans may borrow up to $\$ 2,500$ for an academic year of futi-time study through a special loan program for veterans.

Rights and responsibilities. Institutions are required to report any interrupted attendance or termination of study on the part of students receiving benefits to the VA. Details of the Institute's requirements are given to each applicant. Eligible students must apply for certification each semester in the Office of the Registrar.

ARMY ROTC SCHOLARSHIPS

Army ROTC offers four-, three, and two-year scholarships. The four-year scholarships are awarded on a worldwide competitive basis to U.S. citizens who will be entering college as freshmen. The three- and two-year scholarships are awarded competitively to students who are enrolled in college and are academically aligned with an ROTC program. Students who attend basic camp of the two-year program may also compete for two-year scholarships. The scholarships pay for tuition, textbooks, lab fees, plus a living allowance of up to $\$ 1,000$ each year the scholarship is in effect.

NEW YORK STATE BASED PROGRAMS

Tuition Assistance Program (TAP)

Application procedures. Applicants must apply annually to the New York State Higher Education Services Corporation (HESC), 99 Washington Avenue, Albany, NY 12255. The application deadline for the 1981-82 academic year is March 31, 1982. The HESC determines the applicant's eligibility with an award certificate indicating the amount of the grant. The applicant presents the institutional copy of the certificate when tuition is paid. Polytechnic will defer payment upon receipt of the award certificate.

Selection and allocation. TAP is an entitlement program. The applicant must (1) be a New York State resident and a U.S. citizen or permanent resident; (2) be enrolled fulltime at an approved New York State post-secondary institution; (3) have, if dependent, a family net faxable income below $\$ 20,001$, or if independent and single with no tax dependents, a net taxable income below $\$ 5,667$; and (4) be charged a tuition of at least $\$ 200$ per year.

Undergraduate students may generally receive TAP awards for four years of study. Students enrolled in approved five-year programs may receive undergraduate awards for five years.

Award schedule. The amount of the TAP award depends on the level of study, tuition charge, and net taxable income. (This income is adjusted to reflect other family members enrolled fuil-time in post-secondary study.) For the 1981-82 academic year, full-time dependent students can receive awards ranging from $\$ 200$ to $\$ 1,800$.

Regents College Scholarship

Application procedures. Applicants may obtain applicafion forms from their high school principal.

Selection and allocation. Regents College Scholarships are awarded on a competitive basis. The applicant must (1) have been a legal sesident of New York State for at teast one year immediately preceding the first term for which application of an award is made; (2) be in attendance in a high school within six years in which the examination was taken; and (3) not previously have competed for a Regents Scholarship.

Award schedule. The Award is $\$ 250$ per year for up to five years, depending on the normal length of the program in which the recipient is enrolied.

Guaranteed Student Loan Program

Application procedures. The student should obtain a \}oan application from a participating state lending institution (bank, credit union, etc.) in the student's state of permanent residence. The completed application should be presented to the Polytechnic Financial Aid Office for certification. The application is then forwarded to the lending institution and the appropriate state agency.

Selection and allocation. To be eligible for a guaranteed state loan, a student must (1) be a U.S. citizen or permanent resident alien; and (2) be enrolled in or admitted at least half-time to an approved post-secondary institution.

Loan schedule. An undergraduate may borrow up to $\$ 2,500$ per class year, up to a total of $\$ 12,500$.

Rights and responsibilities. A student may borrow at a relatively low interest rate (currently nine percent) with no repayment as long as the student remains enrolled at feast half-time. Payment of the principal may be further deferred during graduate study, service in the Armed Forces, or during full-time Peace Corps or Domestic Service service.

If a student applies for an additional loan, application must be made to the original lending institution. Four months after ceasing to be at least a half-time student, the borrower must make formal arrangements with the lending institution to begin repayment.

SCHOLARSHIPS AND GRANTS

Polytechnic has a history of scholastic recognition to numerous applicants with outstanding academic credentials. The dollar value of such awards is based on need, academic achievement, recommendation, and outside awards.

Polytechnic Scholarships ranging from $\$ 250$ to $\$ 2,500$ are usually awarded students who have a strong academic background and demonstrated financial need. Normally a freshman student must have combined SAT scores of 1200 and a high school average of 90 to be considered for a Polytechnic Scholarship. Transfer students must have at least a 3.0 grade point average to be considered for a Polytechnic Scholarship.

Polytechnic matching grants are automatically awarded to a student receiving a Regents Scholarship, even if the student is ineligibie for other financial aid. The matching grant is equal to $\$ 250$.

Board of Trustee Scholarships are awarded to the most academically superior freshman applicants. The amount of the scholarship is equal to tuition, less any outside aid for which the student is eligible.

IMPORTANT FINANCIAL AID POLICIES

- To be eligible to receive financial aid, a student must be enrolled at least hatf-time. All Polytechnic Scholarships, TAP grants, and Regents Scholarships, however, require a student to be full-time to qualify.
- Financial Aid applicants are expected to apply for a Pell Grant, and in the case of New York residents, for the Tuition Assistance Program.
- Although at Polytechnic the admissions and financial aid office are combined, admissions decisions are not affected by financial aid decisions. Admissions officers do not have access to financial aid records. Their academic evaluation of a student's qualifications are made without knowledge of the applicant's financial need.

Prospective students should, however, not wait until they have been admitted to apply for financial aid. These are concurrent processes. Applicants should make every effort to apply for admissions and financial aid by the preferred application dates. Once students are admitted, they are then reviewed for financial aid.

- Financial aid is renewable annually, based on a student reapplying, continuing to demonstrate financial need where applicable, and fulfilling any other requirement stipulated by the award. To renew all Polytechnic Scholarships, a student must maintain a 2.5 cumulative grade point average.
- Since Financial Aid and Scholarship Funds administered by the Institute are limited, students should be aware that it is very unwise to enroll at Polytechnic without financial aid support, on the assumption that at a fater date financial aid will be available. Given a fixed amount of resources, the Institute does not deem it ethical to withdraw support from students who may have based their decision to attend Polytechnic on the financial aid they were awarded in order to free up money to assist new applicants later on. Funds from financial aid programs nof administered by the Institute, such as the Pell Grant Program, TAP, and the

Guaranteed Student Loan Program, are available to eligible students regardless of whether a student received funds from these programs upon entry into the Institute.

SATISFACTORY ACADEMIC PROGRESS REQUIREMENT

During the academic terms in which a student is receiving financial aid from federal or state sources, he/she must be progressing toward their degree according to the standards set forth in the "Academic Policies" section of the Polytechnic catalog.
"Terms of eligibitity" for financial aid are calculated as the total time of a student's enrollment at any institution. Students, therefore, can be making satisfactory progress toward their degree but potentially can exhaust their eligibility for financial aid by not completing their degree requirements within the eight semesters "terms of eligibility."

GRADUATE FELLOWSHIPS AND ASSISTANTSHIPS

Fellowships, traineeships, and assistantships are avaitable for advanced study leading to the master's, engineer, or doctor's degree in engineering and science disciplines. Applicants must hold degrees in engineering or science from institutions of recognized standing.

Candidates should make application as early as possible but not later than February 1 on official forms available from the Office of Graduate Studies.

Research Fellowships

Fellows are assigned to research, leading to the fulfillment of the thesis requirement of the graduate curriculum in which they matriculate while pursuing a full-time program of studies. Parlial tuition during the academic year is remitted.

Teaching Fellowships

Fellows are full-time graduate students who participate half-time throughout the academic year in teaching assignments. Tuition during the academic year is remitted.

Special Fellowships

There are available a number of special fellowships sponsored by industry and foundations. Information may be obtained from the departmental office concerned.

Graduate Assistantships

Opportunities are avaitable to doctoral full-time graduate students for work on sponsored research projects. Stipends vary with the qualifications of the individual. Assistants serve 35 hours per week on research leading to the fulfillment of the doctoral research requirement of the graduate curriculum in which they matriculate.

National Science Foundation Graduate Feilowships

The National Science Foundation sponsors two fellowship programs for graduate study. They are listed below:

- Graduate Fellowship Program: fellowships are awarded for study leading to master's or doctoral degrees in the mathematical, physical, medical, biological, engineering and social sciences and in the history and philosophy of science. The program is open to applicants who are citizens or nationals of the United States as of the time of application.
- Minority Graduate Fellowship Program: fellowships are awarded for study leading to master's or doctoral degrees in fields described above. However, they are limited to citizens or nationals of the United States who are members of the ethnic minority group, i.e., American Indian, Alaskan Native (Eskimo or Aleut), Black, Mexican American/Chicano or Puerto Rican.
For details, contact the Commission on Human Resources, Washington, D.C. 20418.

Fannie and John Hertz Foundation Graduate Fellowships

The Polytechnic is one of 17 national schoots to be selected for participation in the Fannie and John Hertz Foundation Graduate Fellowship program. Fellowships are awarded for study leading to master's or doctoral degrees to applicants who will have received a bachelor's degree by the time they propose to commence tenure of their fellowships. The objective is to aid the most capable students in the physical sciences and engineering.

Applications and further information may be obtained from the Fannie and John Hertz Foundation, P.O. Box 2230, Livermore, California 94550.

REGISTRATION

The institution endorses the concept of a close facultystudent relationship and as such the faculty advising system serves as the basis for a student selection of courses and registration. Each academic department identifies a group of faculty to serve as student advisers. In advance of registration, students should meet with their individual advisers and receive approval for their anticipated program of study. A list of advisers and their office numbers may be obtained from each respective departmental office or the Dean of Student Life.

Information on registration and registration appointments are mailed to new students and continuing students prior to the registration period.

PROCEDURE

All continuing full-time students (graduate and undergraduate) must pre-register for the next semiester dufing the middle of each ongoing semester. Continuing fult-time students who do not pre-register will be charged a \$25 late fee. Payment is due about one month before the next semester starts.

UNDERGRADUATE GRANTS AND SCHOLARSHIPS

American Bureau of Shipping Scholarship
American Society for Metals Scholarship
ARCO Corporation Scholarship
The J.B. Chittenden Scholarship
The Arlhur Clapp Scholarshup
The Dewit Scholarship
The Aaron and Simeha Dupitzky Scholarship
The W.E. Ouryea Scholarship
The A.S. Dwight Scholarship
EMCO Development Corporation Scholarship

The I.W. Fay Schelarship
Gemini Industries, Inc. Scholarship
The Alred Heiwig Scholarship
International Nickel Company, Inc. Scholarship
International Precious Metals Institute Scholarship
The Eugene R. Kulka Scholarship
The John F. Kunc Scholarshio
The P.R. Mallory Memorial Scholarship
Raymond Mauro Scholarships
The NSC-Essie Mitchell Scholarship

The Colonel Frank Moll Scholarships
The William Nichols Scholarship
The Nippon Electric Scholarships
Lucius Pitkin Inc. Scholarshio
Sperry Rand Scholarship
Myron Rosenthal Scholarship
Samuel Ruben Scholarshios
The Frank R. and Emilie E Stamer Scholarships
Institute Trustee Scholarships
The Ernst and Sonya Weber Grants

For the award of academic credit, registration is required each semester for every course, including thesis. Attendance in class does not constitute registration. Registration becomes valid only after payment of appropriate tuition and fees to the bursar and certification by the registrar.

To qualify for credit students must fill out registration forms, prepare their program of study, have their course selection approved by their faculty adviser, pay the appropriate tuition and fees to the bursar, and have their registration forms accepted by the Office of the Registrar, according to published deadlines.

Adding and Dropping Courses

Students may eiect to add or drop a course, or change a section of a course for another with the approval of their major adviser. Additions or changes may be made only until the end of the late registration period and only where class limits have not been reached.

If a student drops a course after this deadline, a grade of W (withdrawal) will be recorded.

It is each student's responsibility to register for a con-flict-free schedule. in instances of student-scheduled conflicts that necessitate course changes after registration, the add-drop fee will not be waived.

A fee will be charged for adding or dropping courses or changing sections, except where schedule changes are necessitated by course cancellations, section adjustments and other administrative changes.

Students may not add or change courses within the freshman English program or change sections within the freshman mathematics program without the permission of the respective directors of these programs. Authorized changes within these two programs will be allowed through the fourth week of the semester.

Final Day for Registration

Students are expected to complete registration during the official registration period, but must complete registration by the end of the fifth class day of the semester as indicated in the academic caiendar. Students who do not complete registration by the end of that day of the semester will not be admitted untit the following semester, except by special permission of the dean of the appropriate academic division and the course instructor.

Students who register after the official registration period will be charged a late registration fee. This fee will be waived by the registrar only in clearly justifiable cases.

Course Prerequisites

To be eligible for admission to an advanced course, students should have passed all subjects prerequisite thereto as listed in the description of courses. If, however, they are deficient in but one such prerequisite course, they may apply to their adviser for admission to the advanced course. If these applications are approved by the adviser and by the teachers of the advanced and prerequisite courses, the student may be admitted to the advanced course.

Student Identification

Each student is required to carry and maintain at all times a photo-identification card issued by the registrar. This photo ID must be presented at each registration for validation and shown to a staff member of the Office of the Registrar when making changes in registration or requesting transcripts. ID must be presented and/or surrendered to any official of the college upon request.

A student ID number is used to tdentify individual records (billing payments, grades, etc.) for the student's entire stay at Polytechnic, from the time of admission to the completion of degree. The student ID number is sometimes a social security number, but not always. If a student does not have a social security number when admitted (as in the case of international students), the student is assigned a number by the admissions office. The assigned number will be permanent throughout the student's career at Polytechnic and it will not be changed should the student obtain a social security number.

Veterans Information

All veterans enrolled at the Polytechnic should notify the Veteran Affairs clerk in the Office of the Registrar of the credits to be attempted during a semester. Any questions concerning veteran's benefits or paperwork should be directed to the Veteran Affairs clerk, either in person or by telephone.

GRADUATE STUDENTS

Registration Status

Within the fuli-time and part-time classification of graduate students, there are five status groups: degree status, non-degree status, graduate probation status, provisional and special status. Changes from non-degree status to degree status must be approved by the dean of graduate studies. Graduate special and provisional students must apply for and be admitted to degree or non-degree status through the admissions office.

Degree Status. This status is assigned to applicants who apply for a degree program and whom Polytechnic considers adequately prepared for and capable of such study. Students are admitted to degree status upon the recommendation of their major department of study.

A student who applies without former graduate studies must have earned a bachelor's degree from a fully approved college or university (including professional accreditation). To attain degree status immediately at the time of acceptance into Polytechnic's graduate school, a student must have maintained an acceptable average in the major field of study.

Qualification for degree status of continuing students is reviewed yearly by the dean of graduate studies. If a cumulative B average is not maintained, the status is changed to non-degree status.

Non-Degree Status. This status is generally assigned to applicants who are asked to provide additional demonstration of the ability to pursue a graduate degree program-specifically by achieving A or B grades (minimum requirement of a B average) in at least 12 units of graduate courses. After satisfying the requirements specified at admission, the student wisl, upon written request and the approval of the major department, be transferred to degree status. Change of status forms are available in the Office of Graduate Studies. All of the courses successfully completed which are normally required of that degree program will apply toward satisfying the degree requirements.

This status is also awarded to applicants with advanced degrees who are entering a new professional area and desire extended education, but not for degree purposes. This includes students enrolling in Graduate Certificate Programs. However, should they so desire, students in this status may later request transfer with full credit to degree status.

Graduate Probation Status. The dean of graduate studies is authorized to place all graduate students whose average has fallen below 3.0 grade-points (B) on "academic probation." For the purposes of computing graduate grade-point averages, the following schedule will be used:

Letter Grade	Grade-Points
A	4.0
B	3.0
C	2.0
F	0.0

Courses repeated will count only once in the grade-point average, with the highest grade included.

As soon as possible after the posting of spring grades, the dean will automatically notify all graduate students whose grade-point averages are below 3.0 that they are on academic probation. The data for such determination will be provided by the registrar and copies of all probation notices will go to the department, which will check the accuracy of the grade-point determination.

In addition, the department may, at its discretion, request that a student be placed on academic probation at any time it finds a student falling below a 3.0 grade-point average. The request must be signed by the department head, and is sent to the dean of graduate studies.

A graduate student on academic probation may not register for further courses without the written permission of the department head and concurrence of the dean of graduate studies. When such a student is permitted to register, the department will provide the student with a written statement of the academic performance required for the next academic year or semester, in order to retain permission to register in future semesters. This statement will be kept on file in both the dean's office and the departmental office. Students may be denied permission to register by their department or the dean of graduate studies at any time while they are on academic probation. Students are cautioned that failure to maintain a 3.0 grade-point average may result in the loss of degree status and/or in refusal of permission to register.

No indication of academic probation will appear on the student's transcript, but a record will be kept on file.

Special Status. Applicants requesting admission for study only in a particular course or group of courses are given this status, which permits registration, generally for a limited duration, in just those courses indicated in the approval of admission. If additional courses are desired, a new request must be filed through the admissions office. Registration is limited to two courses per semester.

Provisional Status. On occasion, a decision on a student's application may be delayed. Such a student may be temporarily accepted and allowed to register for one semester pending a decision. If the student is not accepted, heishe has the choice of withdrawing with a full refund or finishing the semester but will not be allowed to register again.

A student has six weeks after registration to get all necessary documents to the admissions office.

Transfer Credit

A limited amount of credit for graduate courses completed with honor grades (A or B) by students from acceptable institutions may be allowed toward meeting the requirements for either the master's or the doctor's degree provided these courses were acceptable at those instifutions for similar degrees and usually after obtaining the bachelor's degree. Such transfer credit is deter-

Registration

mined by the depariment involved and by the dean of graduate studies. Transfer credit for the master's degree is limited to a maximum of nine units.

Graduate courses taken at Polytechnic, while a student is pursuing an undergraduate degree at Polytechnic, subsequently may be applied toward a graduate degree, if those courses were not used to fulfill the undergraduate degree requirements. Such courses are considered to be transfer credits, subject to the nine unit limitation for master's degrees, since the student was not in residence as a graduate student when the courses were taken.

Transfer Credit While in Residence

To obtain credit for courses taken elsewhere while in residence at Polytechnic, written permission must be obtained from the academic adviser and the department head(s) of the course(s) for which credit is requested or from the dean of graduate studies before the start of the
course (forms for such permission are available in these offices). The following requirements may apply:

- The other institution must be accredited.
- The grade earned must be at least C for undergraduate courses and B for graduate courses.
- Pass/fail courses are not acceptable.
- Only the credit will be granted (the grade is not computed in the cumulative average).

It should be noted that in most cases authorization to take courses at another school is required from the appropriate academic dean at Polytechnic.

Validation Credit

Graduate credit in a Polytechnic course may also be established by examination. In this case, application must be made to the dean of graduate studies and be accompanied by the fee specified for that course. The examination will be administered by the department.

The sum of validation and transfer credits for the master's degree is limited to a maximum of nine units.

DEGREE REQUIREMENTS

CREDITS AND UNITS

Undergraduate semester credits are based upon the number of 50 -minute periods scheduled each week for one semester. Normally one credit signifies either one 50 -minute period of class work or three hours of undergraduate laboratory, over a period of 15 weeks.

Graduate studies are expressed in terms of units. One 50 -minute period of graduate class work for a semester carries $1 / / \mathrm{g}$ graduate units. A standard course meeting $21 / 2$ academic periods a week would be equivalent to three units. Courses meeting more or less than $2^{1 / 2}$ academic periods a week carry a proportionate evaluation.

CREDIT FOR COURSES TAKEN ELSEWHERE

Undergraduate

Students entering Polytechnic with advanced standing will receive an appraisal of substitutions allowed based upon credit transferred from their former college. Senior subjects or their equivalent, determined in consultation with the departmental adviser, are to be taken at Polytechnic. The minimum residence requirement for the bachelor's degree is one continuous year of full-time study in the day session or the equivalent in the evening session. See page 13 for further details concerning undergraduate transfer credit policies.

Graduate

Graduate courses completed elsewhere with honor grades (A or B) may be allowed toward meeting the requirements for graduate degrees at Polytechnic to a maximum of nine units, provided these courses were acceptable at those institutions in quallifying for similar degrees.

Transfer credit will be awarded only upon recommendation by the student's major department of study and with the approval of the dean of graduate studies.

Requests for such transfer credit must be submitted in writing to the dean of graduate studies. Students are required to have official transcripts sent to the institute describing the courses for which transfer credit is desired before such an evaluation can be made. Special questions regarding transfer credit will be referred by the dean of graduate studies to the Graduate Curriculum and Standaros Committee.

Grades received in courses with acceptable transfer credits are not averaged in with grades earned at Polytechnic.

REQUIREMENTS FOR THE BACHELOR'S DEGREE

In each of the fields of concentration, a program of study (curriculum) is prescribed. The student is admitted to and registers in one of these programs. Subsequent transfer to another program requires approval by the new department. The changes become official only after the proper form has been received by the registrar. To qualify for the degree, the student must complete the program as outlined in each departmental section in this catalog.

Institute Degree Requirements. In the humanities and sociai sciences, the student must take HU $10 t$ and either HU 200 and SS 104 or IS 140 and IS 141. Students who are placed in HU 103 on the basis of the English Composition Placement Test administered at Polytechnic to all incoming students may substitute HU 103 for HU 101. Students placed in HU 008 or HU 009 must complete this non-credit writing course before taking HU 101 (or HU 103). MA 101 and MA 102 are also Institute degree requirements.

Humanities and Social Science Requirements. In addifion the student is strongly urged to select an area of concentration (such as fiterature, communications, the arts, or phifosophy and comparative religion in the Department of Humanities and Communications, or political science, economics, history, anthropology or psychology in the Department of Social Sciences) and elect two or three courses in this concentration, in consultation with the departmental adviser. A modern language may be chosen as a suitable concentration but a student without prior knowledge of the language must plan to devote at least 12 credit hours to the subject.

For the remaining credits in the humanities/social sciences requirement, the student should select courses in areas other than that of the concentration. Additional courses in humanities and social sciences may be taken as free electives.

DEGREE REQUIREMENTS

A student is required to fulfill the following three conditions in order to be certified for a bachelor's degree:

- Fulfill all Institute and departmental course requirements.
- Earn the required number of credits for the major department.
- Have a 2.0 cumulative grade point average.

Graduation Check List

During the second semester of the student's junior year, a check list is sent to the student showing the courses passed as well as those required to satisfy graduation requirements. Because of curriculum and course changes from time to time, it is occasionally necessary for students to request course substitutions to meet their degree requirements. Variations from the required curriculum must be requested in writing and approved in advance. Such requests should be made to the adviser in the major department on a course substitution form available from the Office of the Registrar and approved by the dean of the academic division in which the student is majoring.

Evening students who complete their courses within eight years of continuous residence may qualify for their degrees under the requirements that prevailed at the time of their original registrations. In the case of transfer students, the eight-year period of residence is proportionately reduced. At the expiration of this residency, continuing students may be obliged to obtain revised lists of courses to include those that have been introduced into the curriculum during the eight-year period.

Whenever students interrupt the continuity of their residence by a period of one year or more, they must meet the requirements for degrees in effect at the time of their reregistration unless they have been granted a leave of absence for military service.

REQUIREMENTS FOR THE MASTER'S DEGREE

Each student qualifying for the master's degree must complete not less than 36 units of advanced study and research in the program elected. The student must establish an overall B average both for the project or thesis and for those courses submitted in partial fulfillment of the degree requirements.

A student may offer no more than 12 units of project or thesis toward the degree requirements. Registration for project or thesis must be continuous until a grade is recorded.

A maximum of nine units may be accepted as transfer and validation credits, the latter not to exceed six credits. All requirements for the master's degree must be complete within a period of five years after beginning graduate study at Polytechnic. Any extension of this period requires the recommendation of the departmen: tal adviser and approval of the dean of graduate studies. A minimum of 27 units of work must be taken at Polytechnic.

In addition to the required courses, each master's program will normally include a comprehensive examination, or presentation of a seminar, or completion of a project or thesis.

CONDITIONAL GRADUATE ADMISSION

A Polytechnic undergraduate entering the final semester of study may apply for conditional admission for graduate study in a department of the Polytechnic, for one semester. If accepted, the student will be simultaneously pursuing two degrees, taking both graduate and undergraduate courses. Graduate courses taken during that semester, and not used to satisfy undergraduate degree requirements, are not included in the nine credit transfer limit for master's programs.

REQUIREMENTS FOR THE ENGINEER DEGREE

Each candidate for the engineer degree must complete a minimum of 36 units of work beyond the master's degree. Part of this work will include a project or evidence of equivalent experience. A maximurn of 12 units of project may be submitted toward fulfilling the degree requirements. At least 27 units of work must be completed at Polytechnic. Registration for project or thesis must be continuous until a grade is recorded.

All work for the engineer degree must be completed within five years after initiating work for this degree at Polytechnic. Any extension of this period requires recommendation of the departmental adviser and the approval of the dean of graduate studies.

The student must maintain an overalt B average both for those courses submitted and for the project (if submitted in partial fulfillment of the requirements for the degree).

REQUIREMENTS FOR THE DOCTOR'S DEGREE

Requirements for the doctor's degree are both qualitative and quantitative. Students will find that the formal requirements of residence, course units and dissertation provide a framework within which they are free to construct individual programs for creative learning.

Graduate students who wish to enter upon a systematic program leading to the doctorate will confer with advisers in the department of major interest regarding selection of courses, major and minor fields of interest, formulation of guidance committees, and qualifying and language examinations. Students must satisfy the detailed requirements of the degree programs chosen.

Each candidate for the doctorate must complete three years of full-time study or its equivalent, namely, a minimum of 90 units of academic work beyond the bachelor's degree, including a minimum of 24 units of dissertation research.

Once the student has started the disserlation, registration must be continuous until the dissertation has been completed and accepted, unless a leave of absence is granted.

Most departments have, in addition, specific course requirements. A minimum of 30 units, including the dissertation units, must be taken at Polytechnic. Each student must maintain an overall B average both for those courses submitted and for the dissertation units completed for the doctoral degree.

All candidates are required to demonstrate a reading knowiedge of at least one foreign language, as approved by their departments.

Full-time students are required to complete all work for the doctorate within six years of initiation of graduate study at Polytechnic. For part-time students, the equivalent maximum time is twelve years. Any extension of these periods requires the recommendation of the student's Guidance Committee and the approval of the dean of graduate studies.

CANDIDACY FOR GRADUATE STUDIES

As soon as a student has completed enough work to be in a position to submit one-half of the degree requirements with a B (3.0) or better average, he or she is expected to apply to the dean of graduate studies for admission to candidacy for the degree. Approval of this application will require a satisfactory record of past academic progress toward the degree as well as the recommendation of the head of the department and the concurrence of the dean that the applicant continue studies toward the degree. Admission to candidacy is a formal recognition of the fact that the dean and the department find the applicant's credentials in order and that he or she is being encouraged to continue studies toward the degree. Students are cautioned not to delay filing for candidacy. An unsatisfactory overall academic record or an incomplete file, can result in a rejection of the application and bar graduation.

GRADUATE CERTIFICATE PROGRAMS

Many departments offer a variety of certificates in specific areas of knowledge for students interested in pursuing course work in these areas without enrolling in full degree programs.

Certificates are awarded for a minimum of 12 units of work in a concentrated area of study (some cerlificates require more than this-see departmental sections for specifics). Admission to a certificate program requires a bachelor's degree in a field related to the program. Students in certificate programs are generally admitted as Non-Degree students.

Admission to a certificate program does not imply admission to a degree-program, though appropriate courses taken toward a certificate could be applied to a graduate degree were the student to be admitted to the degree program.

To earn a certificate, a minimum of 12 units must be taken at the Polytechnic. A 'B' or better average in courses submitted for the cerlificate is required. No course applied to a certificate may be applied to another certificate. To qualify for a certificate, the student must be formally admitted as a nondegree or degree student in the program issuing the certificate, or have the approval of the department or program head if the student is enrolled in another program at the Polytechnic.

The requirement for a certificate must be completed within three years.

THESES AND DISSERTATIONS

Undergraduate Theses

The purpose of the thesis is to apply the knowledge gained in the field of the student's major interests and to familiarize the student with the methods of planning, conducting and reporting research.

Every student who plans to undertake a thesis project should report to the head of the department of major interest for choice of a thesis topic at least a year prior to graduation. The head of the department will approve the request and appoint a thesis adviser. The student should contact the thesis adviser immediately and register for thesis at the next registration period. Thereafter, the student must register for thesis every fall and spring (summers, with special permission) until the thesis is completed and the final grade is entered on the student's permanent record.

The thesis may be a dissertation upon a subject included in the student's course of study, an account of original research, a report on a project or an original design accompanied by an explanatory statement. The regulations covering thesis registration and thesis format are available in departmental offices.

All theses and results obtained in connection therewith are the property of Polytechnic.

Graduate Research (Projects, Theses, Dissertations)

The investigations undertaken for graduate research have as their primary purpose the development of independent and creative thinking. Through them students are trained in analysis, research and synthesis, and contribute to science and engineering.

Research for an advanced degree shall embody knowledge of the field of science or engineering chosen by the candidate, encompassing an understanding of basic principles, together with a commensurate acquaintance with current practices, the literature and the work of leaders in the field.

Research for the master's and engineer degrees shall exhibit a thorough understanding of advanced scientific thought or ability to apply advanced principles constructively to engineering planning and design.

Research for the doctorate shall exhibit critical and constructive thought as well as ability to use the fechniques necessary in the exploration and development of new areas in science or new applications in engineering.

All research shouid be characterized by accuracy of observation and measurement, by thoroughness of analysis and synthesis, and by clarity and completeness in presentation. The conclusions presented must be supported by adequate studies and investigations and supplemented by a complete bibliography.

Registration for Thesis and Dissertation

After a project or thesis adviser or guidance committee has been appointed, the candidate should register for a number of units to reflect realistically the amount of time the candidate expects to devote to this research. Registration must be continuous (every fall and spring-summers with special permission) until an adequate research project and an acceptable thesis have been completed and the required oral examination has been passed. The registration pattern may not be interrupted except with the permission of the dean of graduate studies until a grade is entered on the permanent record. If at the end of a semester the work covered by any unit of registration is deemed unsatisfactory by the adviser, registration for the same unit may be required; such reregistration will obligate the student for full tuition and laboratory fees. Registration for the last unit is required until a permanent grade is submitted to the registrar's office.

Manuscript Presentation

The research is to be presented to the appointed guid. ance committee by the candidate in final manuscript form for offical acceptance on or before the Monday seven weeks before commencement. Draft copies of research manuscripts toward advanced degrees in chemistry and in electrical engineering are required no later than nine weeks before commencement; in chemistry, four typewritten copies are required; in electrical engineering, a single copy.

Research Submission

The format of the bound dissertation is prescribed, and a brochure entitled "Regulations on Format, Duplication, and Publications of Project Report, Thesis, and Dissertations" is available from the Office of Graduate Studies and from the various departmental secretaries. Some of the regulations are summarized below.

Master's or engineer degree candidates are to submit four final bound copies of their research, and doctoral candidates must submit five final copies, of which one copy is to be left unbound for microfilming, while the four others are to be bound. Duplication processes of high quality are acceptable. In addition, each doctoral candidate is required to submit two copies of an abstract of 300 to 600 words suitable for publication in "Dissertation Abstracts," as provided below.

The four finished copies are to be presented to the department for approval, and the original is to be filed in the Office of Graduate Studies before noon on the Monday four weeks before commencement in the year in which the degree is to be taken. This is the copy which is to be kept permanently in Spicer Library. At the same time, doctoral candidates must submit the unbound copy in a labeled envelope and the two copies of the abstract to the Office of Graduate Studies.

Publication

Doctoral dissertations will be microfilmed at University Microfilms, Ann Arbor, Michigan, and abstracts of them will be published in the journal "Dissertation Abstracts." The cost of this service will be charged to the student. Copies of these microfilms may then be purchased from University Microfilms by any interested person.

The faculty regards publication of the major content of a doctoral dissertation in a recognized scientific journal as a necessary final step if the work performed is to achieve maximum usefulness. A deposit is assessed against each doctoral candidate to insure the necessary efforts will be made to secure such publication. This deposit will be returned if evidence of publication, in the form of ten reprints of the article judged satisfactory by the department, is deposited with the Office of Graduate Studies within six years of the awarding of the degree. To be satisfactory, the article must indicate, by footnote or otherwise, its basis in a Polytechnic dissertation.

APPLICATION FOR DEGREES

Formal application for the award of the degree must be filed by undergraduate and graduate students by the end of the first week of the semester in which they expect to complete the degree requirements, and by graduate students before February 4 of the year in which they expect to be awarded the degree. These application forms must include a diploma fee, to be paid in the bursar's office by the above dates. If award of the degree is delayed, the diploma fee need not be paid again. Each student enrolled for an advanced degree shall have been admitted to candidacy for at least one full semester before being eligible for the award of the degree.

Applications for graduate degrees are available in the Office of Graduate Studies.

By vote of the faculty, degrees will not be awarded to members of the Polytechnic teaching staff who hold the rank of assistant professor or higher.

Degrees are awarded at commencement in May or June of each year; completion of degree requirements are certified three times a year at the end of each semester.

CURRICULA

UNDERGRADUATE PROGRAMS

Students may work toward a bachelor's degree either in four years of full-time study in the day session or in a longer period of part-time study. The number of credits full-time students take each semester depends on the curriculum and ranges from 16 to 18.

Students are admitted as freshmen in September and February. Day students entering in September follow normal curricula outlined for fall and spring semesters. Those entering in February follow a program determined in conjunction with their advisers.

Programs leading to some baccalaureate degrees may be pursued completely or largely through evening classes. In addition, individual courses or groups of courses may be pursued independently by qualified students who wish to concentrate upon particular subjects or who desire to achieve competence in a limited branch of engineering, sciences, management, the humanities or the social sciences.

GRADUATE PROGRAMS

Graduate study at Polytechnic is open on a full-time and a part-time basis to persons who hold bachelor's degrees from accredited institutions. Students may work toward graduate degrees-master of science, engineer or doctor of philosophy-or take courses for personal or professional reasons. Not all graduate programs or courses are offered at all campuses; students are referted to the program descriptions under the various departments and to the Course Bulietin, available at the Office of the Registrar.

SUMMER COURSES

Polytechnic offers a wide variety of full-credit summer courses for both day and evening, undergraduate and graduate students during the summer months. The schedule of summer courses may be obtained from the Office of the Registrar.

Civil engineering undergraduate students attend surveying camp for two weeks during the summer preceding their sophomore year. Students enrolled in the advanced course of the Reserve Officers Training Corps attend an active army camp for six weeks during the summer preceding their senior year. Also during the summer the military science department offers Compression Programs to allow for advanced placement within the Reserve Officers Training Corps.

COOPERATIVE EDUCATION PROGRAM

The Cooperative Education Program is an alternative to the standard four-year educational program. It combines college studies with practical working experiences in industry, government and public service. The five-year Cooperative Education program offers experience at a professional level interspersed with a strong academic curriculum.

The Cooperative Education Program is available to undergraduate students who have: 1) completed at least 30 credits of academic work with no course deficiencies, 2) maintained at least a 2.5 cumulative average,3) successfully completed the Cooperative Education Seminars CP 101-102. Freshmen, therefore, would be eligible for their first work experience during the summer following the completion of the first acadernic year. Graduate students and transfer students are eligible usually after completion of one semester.

Students, who apply and are accepted to the program, will start interviewing with participating co-op companies during the semester prior to their first work experience. The Cooperative Education Office will be responsible for setting up the interviews. In most cases the company interview will determine whether or not the student is hired as a co-op employee. Once "on the job" the co-op student employee will be paid a salary and usually receive company benefits. In all cases the students will be given the opportunity to work at tasks directly related to career goals.

DEGREES OFFERED AT POLYTECHNIC**

Polytechnic's programs lead to the Bachelor of Science. Master of Science. Engineer and Doctor of Philosophy degrees. For convenience the following list of degrees offered includes not only those with departmental identifications but also the topics of some undesignated degrees and of some major options within degrees. For more information on degree titles, descriptions and requirements, please see departmental listings.
Numbers are HEGIS code numbers kisted in the Inventory of Registered Degree and Certificate Programs of the New York State Department of Education.

[^2]\dagger Attendance at Brookiyn Campus required during third and fourth years.
**In addition to the degree programs listed, courses are offered in other disciplines at both the Farmingdale and Westchester campuses. Check current bulletin for course listings.

ACADEMIC POLICIES

THE FAMILY RIGHTS AND PRIVACY ACT

Description of the Act: The Family Rights and Privacy Act of 1974 grants to students certain rights, privileges and protections relative to individually identifiable student educational records which are maintained by the Institute. Specifically: (1) Your educational records (with the exception of directory information) will be released to third parties outside the institute only with your written consent, (2) You have the right to inspect your own individually identifiable educational records, (3) You have the right to have reviewed the information contained in your individually identifiable educational record.

The Family Educational Rights and Privacy Act permits the release of directory type information to third parties outside the institution without your written consent provided you have been given the opportunity to withhold such disclosure. The Institute reserves the right to disclose, at its discretion, the following categories of personally identifiable directory information: name, class year, major field, dates of attendance at Polytechnic institute of New York, degree. Currently registered undergraduate and graduate students may withhold directory information by requesting this in writing to the registrar each semester.

Additionally, Long island campus students' names, addresses and telephone numbers may be released to other students for the purpose of arranging car pools. If you wish this information to be withheld, you must notify the dean of student affairs office at the Long Island Campus.

CLASS STANDING

Undergraduates. Students are classified at the end of each semester by the Office of the Registrar on the basis of earned and/or approved transfer credits as of September 1 as follows:

Freshmen. fewer than 28
Sophomores . 28.5-51
Juniors . 61.5-95
Seniors . 95 or more

CREDITS PERMITTED

Undergraduate

Full-time. A program of 12 credits or more categorizes a student as a full-time undergraduate student. The maximum course load for fulltime undergraduate students is 19 credits. Students in special situations (such as
graduating seniors or ROTC cadets) must receive permission from the designated person in their major academic department for any program above 19 credits. Students taking an excess of 20 credits will be charged the per credit rate for additional credits or half credits.

Part-time. Any student registered for less than 12 credit hours per semester (except summer) is considered a part-time student. Part-time students do not qualify for most financial assistance programs.

For evening attendance, a maximum program of 11 credits per semester is recommended under normal circumstances. The average program in the evening is six or seven credits. Registration for 12 or more credits will result in reclassification as a full-time student for that semester, and the student will be charged at the full-time rate.

Summer session. There is no distinction between day or evening status in the summer session. A student may register for seven credits for each six-week summer term and for no more than 14 credits for the combined 12 -week summer session. Registration for six credits for a given summer term is considered full-time status, particularly for financial aid purposes.

Graduate

Full-time. Registration for 12 units or more categorizes a graduate student as full-time. The maximum course load per semester is 18 units. Students who desire to register for more than 18 units must obtain written permission from their department chairman and the dean of graduate studies prior to registration. Students who register for more than 20 units will be subject to an additional tujtion fee based on the per-unit tuition for all units in excess of 20.

Part-time. Registration for less than 12 units comprises part-time status in the graduate school.

GENERAL INFORMATION

ADD/DROP

Additions may be made to a student's program only during the first five class days of the fall and spring or summer semesters. A course may be dropped without academic penalty through the 10th week of the semester in the spring and fall and according to a published schedule for the summer. Students may obtain an add/drop form from the registrar's office. To add or drop a course, the student must have the written approval of the major adviser.

There is a fee for adding or dropping a course or for changing one course or a section for another of equal or different credit value after classes have started.

If the total number of credits registered for increases, the student is subject to an additional tuition charge.

TOTAL WITHDRAWAL FROM THE INSTITUTE

Students having to withdraw completely from the semester in which they are registered must notity the dean of student life or the dean of graduate studies. No withdrawal is official unless a written form is approved and submitted to the registrar. Mere absence from class does not constifute official withdrawal. There is no charge for a complete withdrawal from alt classes.

DROPPED COURSES

A grade of F will be recorded for any student who ceases to attend a course without notifying the Office of the Registrar in writing of withdrawal. Students who file a "drop" form with the registrar by the scheduled deadline will automatically receive a grade of W tor any courses so dropped.

PASSIFAIL OPTION

Beginning in the sophomore year (after a student has earned 28 credits), and with the major adviser's approval, an undergraduate student may elect, during the first five class days of each semester to take one elective course on a pass/fail basis. No more than six courses in all may be chosen pass/fail by an undergraduate sfudent. The student choosing this option need not inform the instructor. At the end of the semester the instructor will submit a letter grade which the registrar will automatically change to a P or U. A request for a letter grade other than P or U will not be honored once the pass/fail option has been chosen

No course required by the student's major department or by the Institute may be taken on a pass/fail basis (e.g., SS104, HU101, MA101, MA102).

TUTORING PROGRAM

Freshmen showing failure or low grades at midterm are notified that tutoring would be helpfut. All students can arrange for tutoring on a one-to-one basis if they have failed a course, or if there is a drop in grades during the semester. There is a prearranged schedule for the student and tutor which stands for the entire semester which generally lasts for one hour a week per course. Students missing three sessions will be dropped from the program. Improvement is monitored by evaluating the grades of the student when entering the program versus the grades while being tutored. The tutors are seniors and juniors on the dean's list who have been carefully screened by the faculty and the counseling staff. There is no charge for this service.

AUDITING COURSES (Graduate Students)

Students may choose the option of auditing a course instead of receiving credit and a grade for it. Regular tuition is charged, and the course is treated as part of a fulltime load. The grade $A U$ appears on the permanent record.

Interested graduate students should see their advisers and must notify the registrar's office within the first six weeks of the semester of their selection of audit status. Under no circumstances may an audit status be changed to credit status once elected.

CREDIT BY EXAMINATION (Undergraduate Students)

In order that capable undergraduate students may move more rapidly into graduate work, comprehensive examinations are availabie to establish credit in courses required for the baccalaureate degree to a maximum of 18 credits. Approval of the department of major study, the department giving each course and the dean of student life is required.

Students may not take examinations for credit for any course for which they have registered at the Institute.

A specified fee is paid to the bursar in advance of each examination. Credit for a subject not formally studied elsewhere or at Polytechnic is earned by achieving a grade of $\mathrm{B}+$ or better in the examination. The grade is not posted to the permanent record.

When validation of transfer credit is the purpose of this examination, the passing grade is set by the department administering the fest. In the area of foreign languages, those presenting their native tongue or the language in which they were schooled are excluded from credit by examination tests in lower-level language courses (i.e. courses for the first four semesters of that language).

VALIDATION CREDIT (Graduate Students)

Graduate credit in a course may be established if a more advanced course (course pairs to be specified by the department) has been passed with an honor grade. Prior arrangement must be made with the department. Credit is authorized by the dean of graduate studies, upon recommendation of the department.

Validation may also be established by examination, when recommended by the department. In this case, application must be made to the dean of graduate studies and be accompanied by a fee. The examination will be administered by the department.

The sum of validation credits and transfer credits is limited to a maximum of nine credits for the master's degree.

TRANSCRIPTS

The Institute complies with the provisions of Public Law 93-380 "The Family Rights and Privacy Act" and will
issue personally identifiable information only upon written authorization from the student.

Official transcripts of the scholastic record of any student or graduate will be issued only at the student's written request or upon submission of a signed release. Official transcripts will be sent directly to the school to which the student is transferring or to any other properly authorized party. In no case, however, will a student receive an official copy of his or her own transcript. Unofficial student transcripts are available to any student upon request in writing. The first transcript will be issued without charge.

The school reserves the right to withhold the issuance of a student's transcript because of failure to meet financial indebtedness to the Institute.

COMPUTATION OF GRADE-POINT AVERAGE

Undergraduate Grading

The weighted grade-point average of an undergraduate student is determined at the Office of the Registrar on the basis of the following numerical values assigned to the letter grades:

Grade	Point Value	Grade	Point Value
A	4.0	C+	2.3
A-	3.7	C	2.0
B+	3.3	C-	1.7
B	3.0	$D+$	1.3
B -	2.7	D	1.0
A grade of F equals 0.			

In the computation of grade-point averages, courses are not considered for which the notation W or inc is entered upon student records, nor where S, U or P has been assigned.

The grade-point average is computed by multiplying the number corresponding to the grade in each course by the hours of credit for the course, adding these products for the courses taken and then dividing this sum by the total number of hours represented by the courses considered.

A W grade does not replace a previously earned grade.

Course Repeats

When an undergraduate student repeats a course two or more times, only the second and subsequent earned grade will count toward the student's grade-point average, provided the second taking of the course is completed within one year of the first. If the course is not offered within one year, it must be taken at the time of its first offering thereafter. This applies whatever the first and second grades. Undergraduate students taking graduate courses are subject to the graduate grading system.

Graduate Grading

For the purposes of computing graduate grade-point averages, the following schedule will be used:

Letter Grade	
A	Grade-Points
B	4.0
C	3.0
F	2.0
	0.0

Courses repeated will count only once in the grade-point average, with the highest grade included.

The AU grade is used for audited courses; it is not used in the grade point average. Sor U grades are used for continuing research registration until the work is completed at which time the earned letter grade is entered on the student's permanent record. The grade point average is not shown on the graduate permanent record.

To obtain any graduate degree or certificate, the student must have a 3.0 grade-point (" B ") average or better in courses submitted for the degree or certificate, and a B or better average in all guided studies \{readings project, thesis, dissertation) submitted.

INCOMPLETE GRADES

When, for valid reasons, such as sickness or some other emergency, a student has not completed the course work at the usual time, the following grades will be given in undergraduate courses: Inc(S) if the student has been performing satisfactorily; Inc(U) if the work has been unsatisfactory. In graduate courses an Inc grade will be assigned. The duration of these grades is one year for undergraduate students, one semester for graduate students. If at the end of this time the course work has not been completed, the grade of Inc(S) lapses into a grade of W; the grade of Inc(U) lapses into a grade of F. in all cases, an incomplete grade must be converted to a letter grade prior to graduation.

The W grade is the only grade not assigned to the student by an academic instructor; it is obtained by administrative action on the part of the student (dropping the course) or the Office of the Registrar (the lapse of an l-S grade).

If a student receives an incomplete grade, heishe should not re-register for the course. Complete the work and make sure that the instructor submits a change of grade form to the Office of the Registrar, at which time it will be entered on the permanent record.

WITHDRAWAL GRADES

A student wishing to withdraw from a course must do so in writing. A grade of W will be entered on the student's transcript, provided the withdrawal occurs within the following authorized periods:
Fall and Spring Semesters: 5:00 P.M. of Friday of the tenth week of the semester

Academic Policies

Six-Week Summer Session: 5:00 P.M. of Friday of the fourth week of the session
Nine-Week Summer Session: 5:00 P.M. of Friday of the sixth week of the session
Tweive-Week Summer Session: 5:00 P.M. of Friday of the eighth week of the session

The student's major adviser is required to approve the withdrawal on the appropriate form. Once entered on the student's record, the grade of W cannot be changed to any other grade.

CHANGE OF DEPARTMENT

Even though students voluntarily indicate on their applications their field of special interest, it is expected and understood that with the passage of time some will wish to make changes in department. Final approval for such action by undergraduates must be obtained from the adviser of the new department, and for graduate students, through the Office of Graduate Studies. Such departmental changes become official only when approval forms are filed with the registrar. (Forms are available from the registrar.)

LEAVE OF ABSENCE

Undergraduate

A student wishing a leave of absence should discuss this with the dean of student life. A student desiring to reenter after a period of absence may submit a request for readmittance by fiting an application with the Office of Admissions.

Graduate

Part-time graduate students, who last attended Polytechnic within a three-year period prior to the semester for which they are seeking readmission, need no formal readmission. However, in order to receive registration material, they should notify the Office of the Registrar. Full-time students who desire to interrupt their studies may request a leave of absence for a specified period, usually not exceeding one year. Such a request when approved by the dean of graduate studies, will constitute assurance of readmission to a degree program. Forms for requesting a leave of absence are available in the Office of Graduate Studies.

Once a graduate student has started the dissertation, registration must be continuous, and a leave of absence is required for semesters in which a student will not be registering for research credits.

ACADEMIC STANDING

In order to remain in good standing, an undergraduate student must maintain term and cumulative grade point averages of 2.0 or greater. In addition he/she must successfully complete a minimum number of credits during each term of fuli-time study. In this instance "term" is used to refer to fall and spring sessions. Intersession
and summer courses are calculated separately. The minimum number of cumulative credits to be achieved by the close of each term of full-time study appear in Table I.

TABLEI
Term $\quad I \quad$ II III IV V VI VII VIII IX X
Minimum credits
successfully $\quad 6 \quad 18 \quad 3044 \quad 58 \quad 7388104120136$ completed

These requirements are not applied to part-time students.

In calculating the number of credits successfully completed:

1. Credits undertaken for which the grade of F is earned count in the calculation of total credits of enrollment. They do not however, figure into the number of credits successfully completed.
2. Credits assigned the grade of W do not appear in the calculation of credits undertaken, earned or successfully completed.
3. Credits originally bearing the grade of F and repeated within one academic year will be re-calculated with the second grade earned, thus potentially entering into the number of credits successfully completed.
4. Credits with the grade of incomplete will be counted toward successful enroliment for one term. At the end of that time any grade of IS or IU that has not been changed by the professor of record will go to the grade of W or F, respectively, and be deleted from the number of credits successfully completed.
5. Transfer students will enter the standard as calculated from the point at which transfer credits place them. It is likely that they will fall between the credit/ grade point minima in the same way as students pursuing 126 and 128 credit curricula and four year graduates.

A second requisite for good standing is the maintenance of a grade point average at 2.0 or above, or performance approaching 2.0 in a steady and realistic fashion. The grade point average is calculated by dividing the number of quality points achieved by the total number of credits undertaken. Accordingly, all credits assigned a letter grade, whether successfully or unsuccessfully completed, are used in establishing the grade point average. Table it contains the absolute minimum cumulative grade point average to be achieved by the close of each term of full-time enrollment. "Term" in the case of parttime students indicates the points at which 12 or more credits are undertaken. Thus, the first term of study ends where 12 credits are accumulated; the second is calculated from that time onward until 24 credits are accumulated. According to these term equivalents, grade point requirements for part-time students follow those for fulltime students.

TABLE II

Term	I	II	II	NV	V	VI	VII	VIH	$\mathbf{I X}$	\mathbf{X}
Minimum cum-										
Ulative G.P.A.	1.3	1.4	1.5	1.67	1.78	1.88	1.95	2.0	2.0	2.0

PROBATION

Undergraduate students will be placed on academic probation when they cease to make minimal progress. Minimal progress is defined as the successful completion of an increasing number of credits and the achievement of a minimum term grade point average of 2.0. The academic standing for part-time undergraduates will be calculated at those points when they complete the equivalent of a full-term load, i.e. enrollment in 12 or more credits. The grade point requirements will be applied to these term equivalents.

RESTRICTIONS OF PROGRAMS AND ACTIVITIES

Undergraduate students on probation should limit their extracurricular activities and are limited to a 15 -credit program. Evening students on probation are limited to seven credits per semester throughout the year, including the summer term.

DISQUALIFICATION

The Committee on Standing, comprised of the dean of student life and representatives of the student's major department, shall jointly disqualify from the Institute any student whose cumulative average falls below the appropriate minimum shown in the accompanying table:

TABLE III

| Term | I | II | III | IV | V | VI | VII VIII IX | X | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Minimum credits
 successfully
 completed | 6 | 18 | 30 | 44 | 58 | 73 | 88 | 104 | 120 | 136 |
| Minimum cum-
 ulative G.P.A. | 1.3 | 1.4 | 1.5 | 1.67 | 1.78 | 1.88 | 1.95 | 2.0 | 2.0 | 2.0 |

Additionally, a student's major department may disqualify a student at or above the minima listed above, if indications exist that further, continued performance will not lead to successful completion of degree requirements. Unless accepted into another department, a student so disqualified will not be permitted to attend the Institute for at least one academic year.

EXCEPTIONS

Extenuating circumstances such as medical and serious personal disorders must be documented and can lead to the waiver of these criteria for one term. Performance in the subsequent term must return to the minimum standard. Such reckoning must be made in concert with the student's major deparment and the dean of student life.

READMISSION AFTER ACADEMIC DISQUALIFICATION

Students who have fallen below the minimum standard and are disqualified may be considered for readmission upon submitting a formal application and evidence of an
increased interest and likelihood of satisfactory performance. Such applications will be considered by the dean of student life in consultation with the department to which a student is applying. A student will reenter in the standing at the time of disqualification. At the time of readmission a plan for regaining good academic standing must be recorded with the dean of student life. Conditions requisite to the pursuit of good standing must be followed by the readmitted student.

Questions regarding undergraduate academic standing should be directed to a student's departmental adviser and to the dean of student life.

FINANCIAL AID

The standards which prevail for determining a student's academic eligibility to reenroll at the Institute also apply to a student's academic eligibitity to receive all forms of government-sponsored financial aid. See the financial aid section for additional information.

ADMINISTRATIVE ACTIONS DEAN'S LIST

Undergraduate students who achieve grade-point averages of 3.0 or better are commended by the dean and placed upon the honors list. This list will be posted semiannually for day students and annually for evening students. Only those who complete 12 semester hours or more of study during the interval and who have an overall cumulative grade-point average of 3.0 or better are eligible for the dean's list. Students who include project and thesis courses or pass-fail courses in their 12 -credit-ormore programs are also eligible for the dean's list provided these courses comprise one half or less of the credit load for the semester and all the aforementioned requirements are met.

Senior Honor Students

Each spring, the departments may select those students with high grade point averages who will complete their B.S. requirements during the following year. Those students are listed as Honor Students in the Commencement Program for the spring when they are selected, and they are given special permission to make substitutions in their selection of senior year courses (e.g., substituting more advanced or graduate courses in place of the usual requirements).

To be eligible for this designation, transfer students must be scheduled to complete at the Polytechnic at least one-half of the credits used to satisty degree requirements.

DEGREES WITH HONORS

Degrees with honors will be awarded at commencement to undergraduate students of high scholastic rank upon unanimous recommendation of the faculty. Honors will

PRIZES AND AWARDS GIVEN AT GRADUATION

Aerodynamics Laboratories Award
American Institute of Aeronautics and Astronautics Award
American Institute of Chemists Award
Ametican Society of Mechanical Engiseers Award
American Statistical Association Award
John W. Anorews Placement Award
Bichard W. Biock Award
John R. Brierley Alumni Award of Service
Oaughters of the American Revolution Award
Dow-Jones Wall Street Journal Student Achievement Award
Mitchell Fein Award
Simeon Gang Award
Margaret Goldstone Memorial Fund Award
Harold Herlzberg Award
James H.J. Hughes, Jr. Award
Institute of Electrical and Electronics Engineers Award
Noah A. Kahn A.S.T.M. Committee E-7 Award
Raymond E. Kirk Award
Eugene R. Kulka Award (Eta Kappa Nu)

Eugene 8. Kulka Award (Tau Beta Pi)
George C. Marshall ROTC Award
Mermaid Club Awards
New York Metropolitan Section of the American Nuclear Society Award
Omega Chi Epsilon Award
Outstanding Student Award
David B. Porter Award
Alfred Raymond Prize
Robert Ridgeway Student Chapter Prize
Myron M. Rosentha! Prize
Myron M. Rosenthal Scholarship Fund Award
George D. Schaefer Award
Seymour L. Shapiro Award
Sigma XI Senior Research Award
Joshua Sitils Award
Albert E. Sobel Prize
Theodore Clinton Towl Award
be based upon the following cumulative grade-point averages:

Degree cum laude	3.40 to 3.59
Degree magna cum laude	3.60 to 3.69
Degree summa cum laude	3.70 or higher

To be eligible for degrees with honors, transfer students must complete at Polytechnic at least one half to the total number of credits required for the particular degree.

CONCURRENT ATTENDANCE

Undergraduate students enrotted at Polytechnic may not enroll in another institution a! the same time for academic credit unless they have written approval from their academic adviser and the department head(s) of the course(s) in which they wish to receive credit. Such permission must be obtained in advance of registration at the other school, and the combined number of credits may not exceed the total permissible at Polytechnic.

ACADEMIC JNTEGRITY

The faculty assumes that themes, term papers, results of laboratory experiments and examinations submitted by students represent their own work. The presentation for academic credit of the same work in more than one course is prohibited unless a joint project receives the expressed and prior permission of the instructors involved. The following explanations are intended to clarify this statement for all students.

LABORATORY EXPERIMENTS

Although a student may be permitted or required to cooperate with one or more fellow students in a laboratory experiment, many experiments are to be done by the students independently, and all require some independent work. For a student to submit the results of another's work as the student's own or to accept unauthorized help in an experiment constitutes academic dishonesty.

WRITTEN WORK

All sources of assistance-published or unpublishedare to be acknowiedged in every piece of writing.

EXAMINATIONS

A student using or receiving unauthorized assistance during an examination, as from notes or other students, is in violation of acadernic regulation and is subject to academic discipline, including forfeiture of credit for the course, probation and dismissal from Polytechnic.

STUDENT SERVICES AND ACTIVITIES

The Office of the Dean of Student Life is responsible for the operation and maintenance of the Institute's community and student-oriented programs and services. More specifically, the function of the office is to help students obtain the maximum benefit from their coilege training-academically, culturally and socially. To achieve this objective, the office supplements and reinforces the educational program by

- Providing services to guide the student in obtaining the most satisfactory results th scholarship and personal adjustment.
- Giving assistance to the student in matters such as health insurance, housing and community resources.
- Coordinating the extracurricular student activity groups and organizations.
- Representing student interests in the decision making processes of the institute.
- Keeping the student aware of the rules and policies of the Institute.
- Administering the academic and disciptinary policies of the Institute.

PRE-COLLEGE GUIDANCE

Principally through its admissions office, Polytechnic conducts a career guidance program for secondary school students contempiating college training. Polytechnic personnel, including faculty members, frequently lecture before high school audiences on various phases of Polytechnic's programs. Students are interviewed by the admissions office and then directed to faculty members for a thorough briefing in a particular professional specialty. At its open houses in fall and spring, Polytechnic devotes several days to presenting its educational programs to potential students through lectures, demonstrations and conferences.

UNDERGRADUATE ORIENTATION

An orientation program is planned for the beginning of each semester. At this time, incoming students are introduced to the academic and social environment of Polytechnic. Informative sessions and advisement as well as activities relative to student life are offered. The Ambassador Society conducts tours and welcomes new students to assist them to make the transition from their former acadernic environment to that of Polytechnic a bit more comfortable.

UNDERGRADUATE ADVISERS

Freshmen are assigned an adviser in their major department who is available for the individual counseling on all academic and related matters. Facuity members also serve as advisers to the undergraduate extracurricular activities.

GRADUATE ADVISERS

Representatives of the various departments are assigned as advisers to assist graduate students in the selection of courses to meet their individual needs, to aid them in planning a program for an advanced degree and to guide them in their professional advancement.

COUNSELJNG SERVICES

Often students require counseling in dealing with matters concerning family problems, study habits or adjustment problems. Referral for psychological counseling is offered by the Office of Student Life at no charge. There may be a fee for services by these agencies, on a sliding scale based on income and expenses.

OFFICE OF SPECIAL SERVICES

Tutoring and counseling services are offered through Polytechnic's Office of Special Services. If a student is in need of academic assistance, the Office of Special Services provides tutoring on an individual or group basis. Qualified upperclassmen serve as mathematics, physics, computer science and chemistry tutors.

Interested students can also take advantage of workshops in note-taking, study skills and test-taking. These academic-related skills assist students in successfully mastering the technical curriculum at Polytechnic.

In addition to academic guidance, the special services staff provides vocational and personal counseling. Onsite visits and plant tours are arranged to heip students explore the various opportunities available to them when they leave school.

Special services coordinates a special summer program designed to assist pre-freshmen with deficient academic backgrounds. Through summer courses in mathematics, English and academic skill building, incoming students are able to accelerate and enter Polytechnic in the fall ready to meet the academic challenge.

Addressing the varied needs of the Polytechnic student is the primary goal of the special services office. Therefore, all tutorial, educative and counseling support services are provided at no charge to the student.

WOMEN'S PROGRAMS

The Women's Programs Office was established to reaffirm Polytechnic's commitment to equal opportunity in technical and scientific education for women and minorities. This office coordinates our special programs for women students and serves as a clearinghouse for information about scholarship opportunities, career options and other activities of particular interest to women.

Women's Programs sponsors a special program for minority women who are graduates of two-year coileges and wish to transfer to Polytechnic to pursue careers in management and other technical fields. This program, which has doubled its enrollment within the past two years, offers counseling and tutoring support for participants as well as other transfer students.

Women's Programs also coordinates a special summer mathematics program designed to provide an intensive review of high school mathematics and geared to those students who are deficient in math and/or who are changing fields.

In addition to programs for undergraduates, the Women's Programs Office offers educational and career counseling for female college graduates who are returning to the classroom to prepare for a career in the technical fields. Re-entry programs for women are currently available at Polytechnic in many graduate engineering and scientific disciplines.

INTERNATIONAL STUDENTS

The Polytechnic Institute of New York has been enrolling international students for many years. Over the years, thousands of students have graduated and returned to their countries. International students are an integral part of the Polytechnic. Advisers and administrative personnel are sensitive to the needs of international students and strive to meet them. International Student Services is centralized in the Office of Student Life. A futi-time adviser is on hand to coordinate services and provide assistance to students. Students are urged to contact the office upon arrival and are welcome to drop by anytime. (See also the "Admissions Section" for further information.)

PHYSICALLY HANDICAPPED

Every effort is made by the Institute staff to provide assistance to physically handicapped persons so they may participate fully in the life of the college community.

Polytechnic fully supports Section 504 of the Rehabilitation Act of 1973 making accommodation of disabled students mandatory. The physically handicapped student
may be assured that on our small and easily accessible campus individualized supportive services are available as needed. To further attract the physically handicapped, renovations are planned which will eliminate existing architectural impediments from the facility.

CAREER SERVICES

The placement service for students functions as part of the educational system at Polytechnic. It is a studentoriented service committed to the principles of individual responsibility, free choice and human development. Specifically, Career Services believes that individuals must assume the responsibility for deciding what, how, when and where they will provide for their future needs.

Accordingly, the primary function of Career Services is to help students learn how to locate suitable positions, decide whether to work or pursue graduate studies, or to make other decisions concerning post-graduate plans. This service continues after graduation, and all alumni are encouraged to contact Career Services whenever they need assistance in planning or making a career or job change.

Each year, Career Services hosts several hundred recruiters from industry, business and government for the purpose of interviewing students for employment opportunities. Additional functions such as Career Days and Career Seminars are also held. All students are encouraged to become acquainted with the staff of Career Services early and to fully utilize its services.

HOUSING

Resident students on the Brookjyn campus are housed on two floors of the Richard L. Connolly Residence Hall of the Long island University located at Flatbush Extension in Brooklyn, Just four blocks from the Polytechnic.

Residents are assigned to either 2 -person rooms or 4 -person suites. There are no facilities for children. There are no cooking facilities. There is an optional meal plan available.

Further information can be obtained from the Office of Student Life at the Brooklyn campus.

The Residence Hall at the Long Island campus houses a limited number of students in apartment-style suites. Each suite contains 4 private bedrooms, a common room complete with kitchenette, a shower room and a bathroom.

Private housing in the area surrounding Polytechnic's Long island Campus is scarce. Often it is necessary to pay a fee (usually equal to one month's rent) to a real estate broker. Additional information about housing at the Long Island Campus is available from the Campus' Student Services Office.

CAMPUS LIFE

The Polytechnic Institute of New York draws together a diverse population in pursuit of honest inquiry and academic excellence. The processes of education and human interchange that ensue are grounded in academic freedom and mutual respect. The rights and responsibilities contained in municipal, state and federal statutes are provided and expected from all members of the Polytechnic community. The Institute reserves the right to note, investigate and take appropriate steps as described in the information below.

1. RULES OF CONDUCT

A. Ali members of the institute community-students, student organizations, faculty members and members of the staff-shall comply with city, state and federal faws and ordinances affecting the maintenance of arder on Institute premises.

1. Conduct that is viofative of such laws and ordinances occurfing on Institute premises may be subject to Institute discipline and public sanctions as circumstances may warrant or dictate.
2. Conduct that is violative of such laws and ordinances occurring off institute premises will ordinarily not be subject to Institute discipline, unless such conduct:
a. seriously affects the interests of the Institute or the position of the member within the Institute community, or b. occurs in close proximity to tnstitute premises and is connected with violative conduct on Institute premises.
B. Atl members of the institute community are prohibited from engaging in conduct leading to or resulting in any of the following:
3. Interference with of disruption of the regular operations and activities of the institute.
4. Denial of, of unreasonable interference with the rights of others-including persons not members of the Institute community who are present as invitees or licensees-on institute premises. These rights include the right of academic freedom as well as constitutionally protected sights.
5. Injury to Instifute property, real or personal.
6. Unauthorized access to or occupation of nonpublic areas on Institute premises, including but not limited to classrooms, seminar rooms, laboratories, libraries, faculty and administrative offices, auditoriums, and recreational facilities.
7. Unauthorized access to or use of personal property, including files and records.
8. Any action or situation which recklessly or intentionally endangers mental or physical health or involves the forced consumption of ifquor or drugs, for the purpose of initiation into or affiliation with any organization.
C. Visitors, including invitees and licensees, shalt at all times conduct themselves in a manner that is consistent with the maintenance of order on Institute premises, and their privtlege to remain on Institute property shall terminate upon breach of this regutation. The institute in addition reserves the right at its discretion to withdraw at any time the privilege of an invitee or licensee to be on institute premises. A trespasser has no privilege of any kind to be on Institute property but is nevertheless subject to these regulations governing the maintenance of order.
D. Nothing contained in these rules is intended nor shatl it be construed to limit or restrict the freedom of speech or peaceful assembly.

II. PROGRAM OF ENFORCEMENT

A. Visitors (Invitees, Licensees and Trespassers). When administrative officers or members of the protection service of the institute in their discretion determine that the privilege of an invitee or licensee to be on Institute premises should be
withdrawn, they shall ask the invitee or licensee to leave the premises, and the invitation or license shall hereby be terminated. If any person, whether initially a trespasser, ifcensee or invitee, fails to leave Institute oremises promptly upon request, the institute will use alt reasonable means, including calling for assistance of the police, to effect removal.
B. Disciplinary Action. A member of the Institute community who is charged with a violation of the Institute rules set forth in Section I above shall be subject to appropriate disciplinary action as follows:

1. Students

a. Discipinary action shall be carried out by the Student Affairs Committee of the Faculty and the Office of the Dean of Student Life. Academic performance falls within the purview of the instructor who may seek the assistance of the department chairman, In inst ances of broader consideration, the services of the dean of student life are requested. That person will contact all parties invoived, collect facts and request the advice of the monitoring badies within the academic community. In order to initiate this process written complaints are submitted to the dean of student life.

Matters of sufficient gravity that a\ddagger fect the general operation and palicies of the Institute will be addressed at an administrative hearing. At that time a person may introduce personally relevant information in support of a particular position. The person may aiso have an adviser present.

2. Faculty Members

a. When a faculty member is charged with a violation of these rules, an effort shafl be made to resolve the matter informally under the direction of the dean of the respective division at the departmental level or with a committee of the faculty of that division.
b. When the matter cannot be resolved as provided in the preceding paragraph, disciplinary action shatl proceed as follows:
i. If the faculty member charged with a violation has permanent or continuous tenure, the Rules of Tenure in the Code of Practice shall apply.
ii. If the faculty member does not have continuous or permanent tenure, his case shall be referred to a special committee of the faculty designated for that purpose. The special committee shall adopt its own rules of procedure consistent with procedures recommended by the American Association of University Professors. It shall have the authority to impose any of the penalties, other than dismissal listed in Section IF-C and to recommend the penalty of dismissal.

3. Institute Staff: Adminlstrative Officers and Other Employees

When a member of the Institute staff, other than a faculty member, has been charged with a violation of tnstitute rules, the charges shall be considered and determined administratively in accordance with established practices of the Institute. If the person against whom the charge has been made is both an administrative officer and a faculty member, the case shall be governed by this section unless the violative conduct was of such a nature as to call into question the person's continued qualification for service on the faculty; in the latter event, disciplinary action will proceed in accordance with Section It-B-2, above.
4. Student Organizatlons: if a student organization is charged with a violation of Institute rules, the charges shall be considered and determined administratively in accordance with the established practices of the institute.
C. Penalties. Penalties for violation of Institute rules that may be imposed upon members of the Institute community include the following:

1. Reprimand
2. Censure
3. Removal of privileges
4. Suspension
5. Dismissal or expulsion
6. Recision of permission for student organization to operate on campus
7. Other sanctions deemed appropriate

DRUG ABUSE

The State of New York has legal restrictions on the use of drugs which are enforced throughout the state. Because the Institute cannot protect those who break the laws of the state, it will not interfere with law enforcement agencies who may act upon information they obtain regarding illegal acts. The community may also desire, as in any other concern, through the disciplinary system, to be responsible in cases that invoive campus abuse (both private and public) of drugs.

HAZING

The Institute complies with Section 6450 of the Education Law of the State of New York (as amended in 1980). Accordingly, any action or situation which recklessly or intentionally endangers mental or physical health or involves the forced consumption of tiquor or drugs tor the purpose of initiation into or affiliation with any organization is prohibited.

ACCIDENT AND HEALTH SERVICES

Presentily, alt full-time undergraduates and graduates are covered by accident insurance. Emergency treatment is provided at a nearby hospitai, and the institute arranges for escorts to the hospital in case of an accident or health emergency occurring on campus.

Health insurance is recommended for all futl-time students. For a specified fee, a student can be covered for health and hospitalization. Foreign students and residence hall students are required to enroll in the Polytechnic policy group or show comparable coverage from another source.

STUDENT ACTIVITIES

There are approximately 45 student organizations on campus working under Institute goals which give the student freedom of expression in setting organizational guidelines, in assuming responsibility for performance and in developing independence and awareness leading to social, cultural and educational growth. Some of the main activities are:

Student Council: The members of the Student Council are elected by popular vote as are the officers of other student organizations which govern student activities at Polytechnic. Each class elects its own officers with the student council president and treasurer elected by all campus elections. The Student Council directs the extracur-
ricular activities of the undergraduate student body and administers funds received from the student activity fee and allocates these to publications, organizations and other student activities. The Council is also responsible for presenting a campus-wide film, lecture and music series which are open to all students.

Publications: Engineers and scientists require writing ability for their professional duties. Polytechnic publications offer a practical medium for students to develop their writing talents. The Reporter is the newspaper of Polytechnic. Polywog is the yearbook which works closely with Focus, the photography club, in capturing moments for reminiscence. The Polytechnic Engineer is a magazine devoted to technical and engineering articles. Phoenix is the literary publication of the student body produced in cooperation with the humanities and communications department.

Radio Station: WPIV is the student-operated radio station Iocated in the Student Center. The station offers a cross section of musical interests with student disc jockeys presenting shows during the hours the Student Center is open. Participation is open to any student with technical facilities and record library available to scheduled announcers.

Athletics: For students who seek intercollegiate competition, Polytechnic fields teams in which junior varsity and varsity competition is actively pursued: baseball, basketball, wrestling, rifie, tennis, swimming, cross-country, fencing and soccer.

Polytechnic also encourages intramural competition in touch football, volleyball, basketball, hockey, tennis, handball, softball and badminton.

PROFESSIONAL AND DEPARTMENTAL SOCIETIES

Professional and technical societies are established in conjunction with the various departments in order to enhance the curricula at Polytechnic. The student chapters are branches of national parent organizations. In their chapter meetings, student members hear distinguished guest speakers, plan field trips and read professional papers. There are also four unaffiliated professionat societies at Polytechnic.

Fraternities: Six nationat fraternities are represented at Polytechnic. Most own or rent property in the Brooklyn area, with three offering live-in accommodations. The social traternities contribute to the student community of Polytechnic. Not only do they administer an impressive array of social functions for their own members, but they also serve the student body in many activities. These include the organization of blood donation drives, dances, an annual charity drive and handbalt, basketball and bowling tournaments.

Clubs: At Polytechnic, there are clubs to suit every interest, whether inteliectual, religious, musical, cultural or athletic. The range is quite broad. Many have had a long and distinguished history. Some of these are the Chess Club, Radio club, Railroad Club and the Pershing Rifle Drill Team.

Honor Societies: On the basis of their superior record of academic and cocurricular achievement, students are elected, during their junior and senior years to one of Polytechnic's chapters of the national honorary fraternities. Closely allied to the professional or technical societies, these honorary societies encourage and recognize outstanding scholarship and leadership.

RECOGNIZED COCURRICULAR ORGANIZATIONS

Professional Societies

American Institute of Chemical Engineers
American Institute of Industrial Engineers
American Chemical Society
American Institute of Mining and Metallurgical
Engineers
American Institute of Physics
American Nuclear Society
Institute of Electrical and Electronic Engineers
Association of Computing Machinery
Operations Research and Systems Analysis Society
Operations Research Society of America
Society of American Military Engineers
Society of Women Engineers
American Institute of Aeronautics and Astronautics
American Society of Civil Engineers
PreMed Society
Society for Experimental Stress Analysis
Physics Math Society
Society of Physics Students
American Society for Metals
American Society for Mechanical Engineers
Society of Automotive Engineers
Nuclear Engineer Society
Space Technology and Resources Association
Student Organizations
Pershing Rifles
Capers
Sappers

Chinese Students Association
Demokritos
Association of Latin American Students
NARTU
Jewish Student Union
Society of Chinese Engineers
Radio Club
Astronomical Society
Chess Club
Resident Student Organization
Ambassador Society
Iranian Student Association
International Students Association
Korean Students Association
National Association of Black Engineers

Fraternities
Alpha Phi Delta
Alpha Phi Omega
Lambda Chi Alpha
Phì Kappa Phi
Tau Deita Phi
Tau Epsilon Phi

Honor Societies
Alpha Pi , industrial engineering
Alpha Sigma Mu, metallurgy
Chi Epsilon, civil engineering
Eta Kappa Nu , electrical engineering
Omega Chi Epsilon, chemical engineering
Omega Rho, operations research
Phi Lambda Upsilon, chemistry, chemical, and metallurgical engineering
Pi Mu Epsilon, mathematics
Pi Tau Sigma, mechanical engineering
Sigma Gamma Tau, aerospace engineering
Sigma Pi Sigma, physics
Sigma Xí, research
Tau Beta Pi, engineering

A BRIEF GUIDE TO THE COURSE DESCRIPTIONS

A variety of different symbols appear in the course listings for each of Polytechnic's departments and programs. The hypothetical example below contains all possible notations, and is followed by a complete explanation of all its elements:

MA563 \dagger Experimental Design
21/2:11/2:4
Principles of modern statistical experimentation, including practice in the use of basic designs for scientific and industrial experiments and testing. Single factor experiments, randomized block design, Latin squares, Graeco-Latin squares; factorial and fractional factorial experiments; surface fitting designs. Prerequisites: MA 224, MA 153.
Also listed under OR 889

EXPLANATION

"MA 563 " is the course number for which you must register. The dagger following the course number indicates that this course may be taken for either undergraduate or graduate credit.
"Experimental Design" is the course title. The asterisk following the title indicates that the course is not regularly offered each year. Such indicated courses may be offered either on a regular basis (every second or third year), or
when there is sufficient student demand for the subject. A course without an asterisk is normally offered at some time each year at one or more campuses. Check with the appropriate department to see which criterion applies to any particular course.
" $21 / 2: 11 / 2: 4^{\prime \prime}$ means that the course meets for $21 / 2$ lecture hours and $11 / 2$ laboratory hours each week, and that a total of 4 credits (for undergraduate courses) or units (for graduate courses) are awarded upon successful comple tion of the course.
"Principles of modern . . surface fitting designs" is the actual description of the curriculum to be covered in the course. Foilowing "Prerequisites," you will notice that one course number appears in ordinary Roman Types (MA 224) while one number (MA 153) is in boldface type. If a prerequisite is in Roman type, that course must have been successfully completed betore you may register for the course being described (in this case, the fictional MA 563). If the course is in boldface type, you may take that course concurrently (during the same semester) with the course being described, if you have not already taken it.
"Also listed under OR 898" means that the identical course is listed by another department, and therefore you may register under either course number. If one of the two departments offering the course is your major department, you should register under that department.

BIOENGINEERING

The dual-discipline program of bioengineering introduces the student to engineering in the health-related sciences. The curriculum includes engineering and life-science class work where both hardware and analytic applications are presented. Material coverage includes the instrumentation to acquire physiologic data and the techniques to analyze and process such data.

Bicengineers bring a new viewpoint to the life sciences. By use of their engineering training, they may conduct, direct or collaborate in research that provides a quantitative understanding of the living system. Their knowledge of the life sciences, when applied to related engineering problems, assures that the solution to the problems takes full account of the special properties of living systems. In shorl, bioengineers provide the intellectual link between engineering and the life sciences, a role that is increasingly important in biological and medical research and in industry.

DEGREE PROGRAMS

Polytechnic offers programs that lead to the master of science and doctor of philosophy degrees in bioengineering. While there is no undergraduate program at the present time, students may take a bioengineering concentration within most undergraduate engineering curricula.

REQUIREMENTS FOR THE MASTER'S DEGREE

It is expected that the undergraduate training of many students who enter the master's degree program will be deficient in certain areas. For this reason the program specifies a number of undergraduate requirements in chemistry, biology, mathematics and systems. These requirements (or their equivalent) must be completed before the student is permitted to register for graduate level courses in bioengineering. The required courses are offered as electives in the undergraduate school so that Polytechnic students who are interested in the program may complete them in thelr senior year. Students from other schools take these courses or show equivalent preparation.

The master's program consists of 36 units: 6 in mathematics, 18 in bioengineering, 6 in research and 6 in electives. The sequence permits students to maintain and expand their engineering background and to acquire experience with living systems simultaneously.

UNDERGRADUATE REQUIREMENTS

No. Required Subjects Credits
CM 122 Organic Chemistryl 3
CM 164 Physical Chemistry of $\begin{array}{ll}\text { Living Systems }\end{array}$
LS 105 General Biologyl 4

BE 201-202 | Systems Approach to |
| :--- |
| $\begin{array}{l}\text { Biomedicinel, Il }\end{array}$ |

MA 001 Review of Calculus 0

GRADUATE REQUIREMENTS

No.	Required Subjects	Units
BE 600	Physiology Laboratory	3
BE 602	Clinical Techniques	
	Laboratory .	3
BE 603	Physical Properties of	
	Biological Structures	3
BE 610-611	Physiology for Bioengineers	6
BE 621	Instruments and	
	Measurements in	
	Physiological Systems	3
BE 961-962	Colloquium in Bioengineering	0
Electives in	athematics	
(chosen with	he approval of	
the adviser)		6
Electives in	engineering	6
BE 996	Project	6
	Total	36

Some laboratory sessions for the program are held at the nearby Long Island College Hospital, where live animal studies may be performed. The hospital has made many of its animal facilities available to the Polytechnic bioengineering program and has allocated space for live animal research. In addition, students associated with the program are exposed to the hospital environment and equipment used in clinical and diagnostic studies.

REQUIREMENTS FOR THE DOCTOR'S DEGREE

To be accepted into the bioengineering doctoral program, the student is required to pass a comprehensive qualifying examination. All students who have completed the course work toward the master's degree (excluding the project) with a B average or better are ellgible to take the exam if they have been registered in the program for at least the two semesters preceding the examination date.

After passing the qualifying examination, the candidate (in consultation with program advisers) plans a program of study which includes additional background for bioengineering (as noted below) and course work in two minor fields as chosen by the candidate. In addition, the student must exhibit an ability to read scientific literature in a foreign language and finally must present an acceptable doctoral dissertation on some research program he has elecied. This research study for the doctor's degree is carried out under the direction of (and finally approved by) a guidance committee appointed by the dean of graduate studies.

Required Subject Areas

Units
Advanced Laboratory or Internship
(as arranged with adviser)
Transport Phenomena or Equivalents
Graduate Biochemistry 3
Bioengineering Electives or Equivalents 9
Research and dissertation (BE999) 36

UNDERGRADUATE COURSES

BE 201-202 Systems Approach to

 Btomedicina I, IIeach 2:0:2
Introduction to modeling and simulation in biomedicine. Characterization of resistive and storage properties of physiological systems and their analogs. Analysis of systems with combined properties. Transform notation and transfer functions. Impedance concepts with applications to pulmonary function and diffusion. Periodic signals as related to physiological systems (breathing, EKG), Fourier expansion and frequency response. Introductory concepts associated with feedback. BE 201 prerequisite: MA 102 or equivalent and permission of student's departmentel adviser. BE 202 prerequisite: BE 201.

GRADUATE COURSES

BE 600 Physiology Laboratory

0:4:3
Studies of physiological specimens. Microscopic studies of tissue, nerve and muscle. Animal studies. Prerequisite: BE 610.

BE 602 Clinical Techniques Laboratory
0:4:3
Laboratory tests and measurements in biological specimens and relation to pathological states. Determination of fluid pro-perties-viscosity, refractive index, etc. Characteristics of pH meters, pH determinations, colorimetry, spectrophotometry, fluorimetry, flame photometry. Separation techniques-centrifuge, chromatography, electrophoresis. Tracer techniques. Prerequisites: LS 105 and CM 164 or equivatent.

BE 603 Biophysics 1
21/2:0:3
Physical properties of biological systems. Structural strength, elasticity of bones, muscle, other tissue. Flow properties through tissue, diffusion of gases and liquids, flowthrough vessels. Compartmental analysis, models, trace analysis. Prerequisites: LS 105 and CM 164 or equivalent.
Also listed under PH 635
BE 604 Blophysics II*
21/2:0:3
Transport processes and models of specific organs. Application of radionuclides and dyes for imaging. Nerve conduction
with a detailed discussion of the Hodgkin-Huxley and current models. Prey-predator interactions on the cellular level, in radioimmunoassays, and in population control. Prerequisite: BE 603.
Also listed under PH 636

BE 605 Radiation Physics with Biological and

 Medjeal Appltcatjons*21/2:0:3
Principles of atomic and molecular physics. Problems of radiation protection and biological effects of ionizing radiation. Radiation dosimetry and relationship between dose, biological behavior of sadionuclides, radiation safety levels, effects of acoustical, microwaves, and thermal radiation. Prerequisite: PH 335 or equivalent.
Also listed under PH 637

BE 610.611 Physiology for

Bioengineers I, ll
each $21 / 2: 0: 3$
Intensive course in human physiology. Overall organization of the body; celis, tissue, organs, structure, fluids. Properties and transportation of body fluids; renal function, cardio-pulmonary system, nervous system, gastrointestinal system. BE 610 prerequisites: CM 122 and LS 105 or equivalent. BE 611 prerequisite: BE 610.

BE612 Advanced Physiology Laboratory*
1:8:8
Live animal experiments and demonstrations to illustrate principles of physiology, principles of biological laboratory experimentation and techniques of animal experimentation. Prerequisites: BE 600, BE 611 and BE 621.
$\begin{array}{ll}\text { BE } 620 & \text { Instruments and Measurements in } \\ \text { Physlological Systems |* }\end{array}$
BE 621 Instruments and Measurements in Physiological Systems II

21/2:0:3
Theoretical and practical aspects of measurement problems in physiological systems. Volume conductors; microelectrodes; technique for acquiring body-generated signals. Multiphasic screening systems. EMG, EEG, EKG. Readout devices and computer interface; digital instrumentation; telemetry. Analog and digital computer simulation of biological systems. BE 620 prerequisites: LS 105 and BE $201-202$ or equivalent. BE 621 prerequisite: BE 620 or equivalent.

EE 622 ResearchInstrumentation*
1:6:8
Laboratory course in eiectronics for students who find it necessary to use electronic instrumentation in research programs. Malmstadt/Enke Instrumentation Laboratory used. Power supplied, vacuum-tube and solid state amplifiers, oscillators, servo-systems, operational amplifiers, digital instrumentation. Prerequisite: adviser's approval.
Also listed under CH 841, CM 712 and SA 605

BE 623 Minicomputer Instrumentation for Sclentific Research*

1:2:3
Fundamentais of digital electronics and minicomputers; com-puter-automated laboratory instrumentation; programming and interfacing required for data acquisition and controt in scientific research. Experiments with minicomputers and with laboratory apparatus interfaced directly to minicomputers. Prerequisite: instructor's permission.
Also listed under PH 612 and CM 760

BE 650 Biomechanics*
21/2:0:3
Fundamental bases of biomechanics interpreted in terms of human engineering and engineering mechanics. Applications to industrial and medical problems. Significant anatomical, kinestological and physiological considerations. Demonstration of applications to industrial as well as medical problems. Also listed under ME 651

BE 870 Biosystems*

21/2:0:3
Examination of control functions in the body. Types and properties of receptors. Feedback mechanisms. Performance tests, analysis and simulation of the cardiovascular, respiratory and fluid regulation systems. Examination of pathological states based on simulated models. Prerequisite: adviser's approval.

BE 675 Sensation and Perception*
21/2:0:3
Review of different sensory systerns: vision, audition, taste, smell, touch, temperature sensitivity, vestibular, kinesthetic senses, and their relation to nonsensory controlling stimufi, techniques of obtaining psycho-physical data on each sensory system, and the relation of these techniques to theories of discrimination. Available to undergraduate majors in social science with permission of instructor. Prerequisites: SS 189 or equivalent or instructor's permission.

Also listed under SS 912

BE676 Comparatlve Psychology

21/2:0:3
Comparison of behavior of different species as function of ethnoiogical and psychological variables. Behavior genetics, neural and hormonal control of behavior, behavioral consequences of special sensory structures, spectes-specific behavior, critical period, communication. Prerequisite: SS 189 or equivalent, or LS 106 or equivatent, or instructor's permission.
Also fleted under SS 914
BE 692 Neurophysiology* 21/2:0:3
An in-depth discussion of basic nerve cell physiology covering such topics as the resting potential, sodium pump, action potential, synaptic mechanisms and local neuronal circuits. Prerequisite: LS 106 or BE 611.
Also listed under LS 600
BE 893 Topies in the Neurosciences ${ }^{*}$ 21/2:0:3 A review and in-depth discussion of various topios in the neurosciences. Typical topics will be neurotransmitters, motor controi, developmentał neurobiology, circadian thylhms, pain, neuronal modeling, neural correlates of control nervous system disorders, etc. Topics will vary from semester to semester and course may be taken for repeated credit. Prerequisites: LS 106 or BE 611 or instructor's permission.

Also listed under LS 601

BE 695 Phystological Psychology*
21/2:0:3
Review of physiological bases and correlates of behavior. Physiology of sensory systems, emotions, motivations and electrophysiological correlates of tearning. Prerequisite: SS 198 or BE 111 or instructor's approval.

Also listed under SS 913

BE 741 Bioengineering Metallurgy ${ }^{*}$

21/2:0:3
Metais and alloys for use in the body environment. Examination of corrosion, excessive plastic detormation, fracture and stress-corrosion-cracking. Characterization of metals and arIoys; atomistic, microscopic and macroscopic structures. The phase diagram. Preparation of dental amalgams and other alloys.
Also listed under MT 727
BE 742 Bloengineering Metallurgy It*
21/2:O/3
Design of alfoys for bioengineering applications. Mechanical property requirements for alloys. Effects on plastic deformation of work hardening, recovery and recrystallization. Techniques for avoiding creep and fatigue fatlures. Principles of oxidation and corrosion. Composite corrosion-resistant materials. Prerequisite: BE 741.

BE 800 Selected Topics in Bioengineering* 21/2:0:3
Topics of special current interest in bioengineering as an-
nounced in advance of a particular semester offering. Pre requisite: adviser's approval.

BE 835 Engineering Projects Related to Public

Administration
each 3 units
See Polytechnic's Cooperative Program with New York University's Graduate School of Public Administration on page 205 for details.

THESIS, COLLOQUIUM AND INTERNSHIP

BE 661-982 Colloquium In Bioengineering* nocredit Recent developments in the field of bioengineering through lectures given by engineers, scientists and physicians from industry, research, medical and educational institutions, by statf members, and by qualified graduate students. Required for two semesters of all graduate students seeking degrees.

BE 971-972 Bioengineering intemship*
each 3 units
Assignment of graduate students as members of selected hospital teams to observe hospital practice and participate where appropriate. Work directed by adviser from Polytechnic and teader of hospital team. Normally itmited to students who have completed one full year of graduate study. Prerequisites: BE 602, BE 611, adviser's permission.

BE 996 Profect
each 3 unlts
Bioengineering project under guidance of qualified faculty member subject to approval of program adviser. Project may deal with any aspect of engineering applications in biological studies. Six units of project are required for the M.S. degree.

8E 999 Thesis for Degree of Dcetor of Philosophy

each 3 units
Thesis to give results of independent investigation of problem in bioengineering; requires thorough search of the jiterature and may involve experimental work or may be of a theoretical and analytical nature. Dissertation to show that original contribution has been made that is worthy of publication in recognized journals. Candidate required to take oral examination on subject of thesis and related topics. Minimum registration of 24 credits required. Prerequisites: degree status and successful performanco on qualifying examination. Registration fee, any part: 3 -credit charge.

FACULTY

Willam B. Blassen Professor and Director of Bioengineering
B.M.E., Rensselaer Polytechnic Institute; M.E.E., Polytechnic institute of Brooklyn instrumentation, confrol systems, bioengineering

George Bugliarelio, President and Professor
Dr.Ing., University of Padua (Italy); M.S., University of
Minnesota; Sc.D., Massachusetts Institute of
Technology
Biorheology, social technology
Alfred L. Copley, Research Professor of Life Science and Bioengineering
M.D., Universify of Basel (Switzerland)

Biorheology

Jesse F. Crump, Associate Professor of Bicengineering
B.S., M.D., University of Nebraska

Physiology, bioengineering

ADJUNCT FACULTY

Gabor B. Levy, Adjunct Professor in Bioengineering
Ph.D., St. Thomas institute of Cincinnati Chemical instrumentation

Cart P. Mason, Adjunct Lecturer in Bioengineering B.S.M.E., M.S. Bio.E., Polytechnic Institute of New York
Rehabilitation engineering
PARTICIPATING FACULTY
Robert C. Ackerberg, Protessor of Chemical Engineering

Patrick T. Cahill, Professor of Chemical Physics
Herbert Morawetz, Professor of Polymer Chemistr' and Director of Polymer Research Institute

Shirley M. Motzkin, Professor of Biology and Director of Life Sciences Program

Kurt Salzinger, Professor of Psychology
William R. Allen, Associate Professor of Mathematics
Barry M. Wolf, Associate Professor of Mechanical and Aerospace Engineering

SUPPORTING AND ADVISORY STAFF

Doris Escher (Montefiore Hospital and Medical Center)
M.D., New York University

Pacemakers, cardiovascular studies
Menry Freedman (Long Island College Hospital)
M.D., New York University

Obstetrics and gynecology
Paul Fried (Veterans Administration--Brooklyn)
M.S., Polytechnic Institute of Brooklyn

Biomedical engineering
Seymour Furman (Montefiore Hospital and Medical Center)
M.D., SUNY (Downstate Medical Center)

Pacemakers, cardiovascular studies
George Kelen (Veterans Administration- Brooklyn)
M.B., B.S., University of Sydney (Australia)

Cardiology, noninvasive testing
Parviz Lalezari (Montefiore Hospital and Medical
Center)
M.D., University of Teheran (Iran)

Hematology
Harold A. Lyons (Downstate Medical Center and Kings County Hospital)
M.D., Long island College of Medicine

Pulmonary function
Lenore R. Zohman (Montefiore Hospital and Medical Center)
M.D., SUNY (Downstate Medical Center)

Exercise cardiology

CHEMICAL ENGINEERING

Chemical engineering is, in a broad sense, a professional endeavor that bridges the gap between scientific knowledge and man-miade products. The chemical engineer relies heavily on science, the engineering method, experience and ingenuity to create the equipment and processes that affect the efficient and econormical production of energy or substances.

Virtually everything of material concern to mankind today has, at some point, been nurlured by chemical engineers. They engage in the production of petroleum products, plastics, pharmaceuticals, foodstuffs, synthetic rubber, rocket propellants and a host of other substances. Their influence has been felt in the development of nuclear reactors, fuel cells, automatic controls, sea water desalting plants, missiles and artificial kidney machines. In their daily work they may be behind a desk, at a computer, in the laboratory or in an industrial plant. The challenges they face today are the realities of tomorrow.

The profession of chemical engineering embraces a broad spectrum of activities, including research, process and product development, design and supervision of the construction and operation of the industrial plants that use chemical and physical processes, technical sales and services, consulting, management and teaching. It is a dynamic profession in which the opportunities for a stimulating and rewarding career in the technological era of the future are truly unlimited.

The foundations of chemical engineering are the sciences, with emphasis on chemistry, mathematics, physics and the engineering sciences, including thermodynamics, fluid mechanics, kinetics, and heat and mass transfer. Chemical engineering courses cover the analysis, design and control of equipment, operations and processes.

UNDERGRADUATE PROGRAM

The undergraduate program in chemical engineering provides a sound foundation in science and the engineering sciences and builds on this a strong and in-
tegrated set of courses in chemical engineering. Thorough instruction is given in chemistry, physics, mathematics and in the engineering sciences basic to the understanding of physical and chemical operations and processes. Courses in engineering science include engineering thermodynamics, reaction kinetics, process dynamics, fluid mechanics, heat transfer and mass transfer.

Dealing as it does with both physical and chemical transformation, the chemical engineering curriculum provides a background that enables the graduate to select a professional career from an extremely broad spectrum of opportunities. Graduates will be prepared to take employment in any one of a number of capacities in industry or to enter graduate school for advanced study in chemical engineering or other fields.

The Department of Chemical Engineering offers its undergraduate degree program at two campuses, Brooklyn and Farmingdale, with identical curricula and courses.

In addition to the regular program in chemical engineering, the department also gives students the opportunity to concentrate in one of three particular areas of wide current interest: biosystems, environmental studies and management. All are within the chemical engineering degree program.

The undergraduate program leads to the degree of bachelor of science in chemical engineering and is accredited by the Accreditation Board for Engineering and Technology.

In addition to the requirement of a 2.0 minimum average for graduation, students also are obliged to maintain at least a 2.0 average in chemical engineering courses to qualify for the degree.

ROTC Adjustments-ROTC students should note that freshmen and sophomores may substitute zero-credit military science courses for PE 101-104 (physical education); juniors and seniors may substitute three of the following two-credit courses: MS 131, 142, 143, 146, for six credits of technical electives.

Students in the management concentration option may count SS 251 and SS 252 (6 credits) as parl of their humanities and social sciences requirements.
b. A total of 17 credits of technical electives (minimum) is necessary. In fulfilling this requirement the student should choose at least 3 credit hours of mathematics, plus 3 credit hours of chemical engineering elective courses and an additional 6 credit hours of physics, chemistry or life sciences. The remaining technical electives (5 credits) may be taken in any technical area in consultation with the departmental adviser. Students electing the biosystems, environmental studies or management concentration options may choose their electives in any technical area in consultation with their adviser.
c. Junior transfer students should take CH 123 and CH 124 in junior year in place of electives.
d. To be taken only with permission of undergraduate adviser. A 3.0 average is recommended.

GRADUATE PROGRAM

The graduate programs in chemical engineering are designed to introduce students to advanced design, research and development. The Department of Chemical Engineering offers graduate programs leading to the degrees of master of science, engineer and doctor of philosophy in chemical engineering.

In addition, the Departments of Chemical Engineering and Chemistry jointly offer programs leading to the degrees of master of science and doctor of philosophy in polymer science and engineering. See page 231.

A degree in chemical engineering is generally required for admission to graduate study. The student must have had differential equations. Applicants with degrees in other fields or from other colleges may be admitted with undergraduate and/or graduate deficiencies as evaluated by the graduate adviser. The program leading to the master's in chemical engineering may be used either as a terminal course for development and advanced design, or as a research degree giving preliminary graduate training for the doctorate in chemical engineering.

The degree of engineer in chemical engineering program is oriented toward those chemical engineers who wish to achieve a level of education in advanced process design beyond that normally possible for the master's degree.

The doctor of philosophy in chemical engineering degree program provides advanced graduate study and research for the qualified student interested in research and development.

REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE IN CHEMICAL ENGINEERING

Candidates for the degree of master of science in chemical engineering are to plan their programs in accordance with the following required courses:

No.	Required Subjects	Units
CH 631-632	Transport Phenomena I, II	6
CH 771-772	Thermodynamics I, II	6
CH 781	Chemical Process Kinetics	3
CH 821	Process Dynamics and Control	3
CH 991-992	Seminar in Chemical Engineering	0
Project/Thesis Option either		
CH 902	Guided Studies in Chemical Engineering	6
Electives (including 9 units chosen from		
or		
CH 997 Master's Thesis		
Electives (in CH 600 to C	ding 6 units chosen from 910)	9

All electives are to be chosen in conference with the graduate adviser.

To meet graduation requirements, a student may not obtain a grade of C (or lower) in more than three of the required subjects listed above, including required courses retaken for purposes of improving a grade. This requirement is in addition to the Institute requirements for the master's degree.

REQUIREMENTS FOR THE ENGINEER DEGREE IN CHEMICAL ENGINEERING

Applicants for admission to this program must hold a master's degree (or equivalent) comparable to that of the department. This must include at least the equivalent of the courses in transport phenomena, thermodynamics, chemical process kinetics, and process dynamics and control as a subset of the overall prerequisite of the master's degree. Applicants lacking academic backgrounds in these courses will be obliged to satisfy these requirements as deficiencies prior to enrollment in the engineer's program.

Candidates for the degree of engineer in chemical engineering are to plan their programs in accordance with the following required courses:

All electives are to be chosen in conference with the graduate adviser.

On completion of the design project, the candidate is obliged to submit to an oral examination before a faculty committee. While the examination will focus on the subject of the project, its scope will not be limited thereto; the candidate could expect to be examined on his design competence in a broader sense.

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING

Programs of study are planned individually with the candidate by members of the Department of Chemical Engineering. Systematic study toward a doctor's degree is carried out under the direction of a guidance committee appointed by the dean of graduate studies for each candidate. The program is planned to give the student a thorough chemical engineering background accompanied by study in a minor field chosen by the candidate. The student must pass a comprehensive qualifying examination in chemical engineering, exhibit a reading knowledge in a foreign language and present a doctoral dissertation.

Each candidate for the doctorate must complete a minimum of 90 units of academic work past the bacheior's degree, including a minimum of 30 units of dissertation research. Although the student may elect to take more than 30 units of Ph.D. thesis, only 30 units of Ph.D. thesis can be counted in the required 90 units past the bachelor's degree, and these must be taken at Polytechnic. Once the student has started the dissertation, registration must be continuous, excluding the summer session, until it is completed and accepted. Of the 90 units, a minimum of 30 units must be taken at Polytechnic. A minimum of 48 graduate units beyond the bachelor's degree (not including Ph.D. thesis) in chemical engineering subjects will be required, of which at least 18 units must be taken at Polytechnic. A minor is required within a science or engineering department and should consist of at least 12 units. Attendance is required at the chemical engineering seminars for at least four semesters. Each student must maintain an overall \mathbf{B} average in those courses submitted for the doctoral degree.

For a degree in chemical engineering, the following courses are required and may be used to complete the 48 graduate units required in chemical engineering subjects:

No.	Required Subjects	Units
CH 631-632	Transport Phenomenal, il	6
CH 771.772	Chemical Engineering	
	ThermodynamicsI, II	6
CH 781	Chemical Process Kinetics	3
CH 782	Chemical Reactor Design,	
	Simulation and Control	3
CH 821	Process Dynamics and Control	3
		21

Students interested in the Ph.D. program should obtain a brochure outlining procedures and requirements, which is available from the office of the department head.

UNDERGRADUATE COURSES

CH 123 Chemical Process Anslysis I
 2.0 .2

Introduction to the chemical processes and process synthesis and design. Flow sheets. Material balances. Recycle. Properties of materials. Modern computer methods. Prerequisite: knowiedge of programming.

CH 124 Chemical Process Analysis il
202
Continuation of study of material and energy balances. Elementary thermodynamics and energy balances. Heats of reaction, solution and mixing. Combined energy and material balances. Computer methods. Prerequisite: $\mathrm{CH} \mathbf{1 2 3 .}$

CH 220 Transfer Operstions I
4:0.4
Introduction to transport processes from the standpoint of the laws of conservation, rate phenomena and natural and imposed constraints. Unit operations; distributed versus lumpedparameter systems. Momentum transporl and fluid flow operations in laminar and turbulent flow. Prerequisites: CH 124 and MA 104.

CH221 Trensfer Operations II 4.0 .4

Continuation of theory of transfer operations with applications to chemical engineering systems. Energy and mass transport; heat transter and diffusional mass transfer operations. Prerequisite: CH 220.

CH 241 Multigtege Separation Processes
30:3
Unified treatment of separation processes utilizing the multistage model and mass and energy balances, e.g., absorption, extraction, distilation. The equilibrium stage, stage efficiencies, refiux and system parameters. Graphical, analytical and digital computer techniques of modeling stressed. Prereqquisites: CH 220 and CH 251 , or adviser's approval.

CH 251 Chemical Engineering Thermodynamics \quad 40:4
First and second laws of thermodynamics, open and closed systerns, thermodynamic properties of materials; generalized correlations for real fluids and multicomponent systems. Chemical potential and its use in phase and chemical reaction equilibria. Prerequisites: CM 161 and CM 162, CH 123 and CH 124, or adviser's approval.

CH 271 Engineering Materlals

3:0:3
Structure, properlies and uses of polymers and metais as engineering materials. Crystal structure, defects, heat treatment, corrosion and its prevention. Manufacture and processing of polymers. Mechanical behavior of polyrners and their thermat and electrical properties. Prerequisites: CM 161, CM 162, CM 123 and CM 124.
Also listed under MT 420
CH 301-302 Chemical Engineering Leboratory It if
asch 0.6:2
Experimental study of operations in chemical engineering. Laboratory projects on the unit operations, transport processes, thermodynamics, reaction kinetics, process instrumentation, process dynamics and control. Design and conduct of experiments, interpretation of results, preparation of engtneering reports. Data analyeis done with aid of computer. CH 301 prerequisites: CH 241 and CH 221 . CH 302 prerequisites: CH $301, \mathrm{CH} 322$ and CH 351.

CH 322 Chemical Reactor Engineering

$30: 3$
Application of thermodynamics and chemical kinetics to analysis and design of chemical reactors and reactor systems. Hornogeneous and heterogeneous reactors of various types, uncatalyzed and catalyzed. Design of single and cascaded industrial reactors. Prerequisites: CH 221, CH 251 or inetructor's permission.

CH 351 Proceas Dynamics and Control
 3:0:3

Simulation, dynamics, instrumentation and control of chemical processes. Unsteady state behavior of processes and modeling; control theory. Procees systems analysis via transient and frequency response methods; control systems design. Analog computer simulation. Prerequisites: MA 104 and CH 241.

CH381 Process Deaignl 3.0.3 Syntheais and design of chemical processes, with considerathon of site and process selection, process economics, materials of construction, data requirements and acquisition, flow-sheeting and subsystems. Computer utilized. Case studies. Prerequisites: CH 241 and CH 251.

CH 362 Process Design II

3:0:3
Design of larga chemical process systerns, with speciai emphasis on more complex, integrated process schemes and systems optimization. Prerequisites: $\mathrm{CH} 322, \mathrm{CH} 351$ and CH 361.

CH 380-381 Chemicel Enginsering Project each 2 credits Independent work In an area of interest in chemicalengineering selected by the student and faculty supervisor. Not open to honors or senior thesis students. CH 380 only or both CH 380 and CH 381 may be taken. Prerequisite: department's approval.

CH 391-394 Bachelor's Thesis in Chemical Engineering

each 2 credts Original investigation of a problem in chemical engineering. A thorough search of the literature required. Special apparatus constructed as required for experimental work.

CH 398 Chemical Engineering Internshlp 2 credita A supervised, creative engineering experience of at least two months' duration, typically taken during the summer, culminatIng in a written and oral report presented to the industrial and faculty supervisors. Faculty visitations and conferences during the internship arranged. Prerequisite: senior standing and adviser's approval.

CH 399 Senior Honors Work in Chemical Engineering credit to be arranged Independent work undertaken by qualified honors students under faculty guidance.

GRADUATE COURSES

CH 811† Unit Processes of

Chemical Technology $21 / 2: 0: 3$
Study of the more important chemical industries, their processes and products. Effects of process variables on end products and needs for variation in properties of products as determined by mafket demands. Interlocking chemical industries. Product planning and marketing. Prerequisite: instructor's permission.

CH 612 \dagger Chemical Process and Project Evaluation $21 / 2: 0: 3$ Analysis of the design and operation of chemical process plants and their individuai components, with attention directed to the integrated and consistent use of technical and economic information. Special consideration given to optimizing the deaign of chemical plant purnping, process piping insulation,
heat transfer and recovery systems, as well as various mass transfer operations such as distillation, gas absorption, stripping and liquid extraction. Prerequisite: CH 361 or equivalent.

CH 631-632 Transport Phenomena I, II
each $21 / 20: 3$
Fundamental concepts of momentum, energy and mass transport; transport in stationary and flowing systems, steady-state and transient conditions. Elementary Cartasian vector and tansor analysis; conservation equations for general cases and in macroscopic form; rate expressions. Fluid dynamics, energy transfer and diffusion; turbulent transport; transport coefficients; analogies; dimensional analysis; boundary layers, high rates of mass transport. Applications to chemical engineering systems stressed. CH 631 prerequisites: CH 220 and CH 221 , or equivalent. CH 632 prerequisite: CH 631.

CH 841 Particle Transport Processes*
21/2:0.3
Fundamentals of particle-fluid systems. Momentum, heat and mass transport in two-phase systems. Fluidization. Particulate removal. Analysis of particle size distribution and concentratlon. Fluid-solid reaction kinetics and design. Prerequisite: MA 531 or equivalent.

CH721 Mass Transfer Operations*

$21 / 20: 3$
Unified treatment of mass transfer operations such as distillation, absorption and extraction. Phase equilibria and thermodynamic correlations for binary, multicomponent and complex systerns. Engineering design methods of stagewise and differential contact operations, including machine computational techniques. Developments in these areas. Prerequisite: instructor's permission.

CH 742 Deskg of Solld Waste Processing

 Systems*$21 / 20: 3$
An evaluation of advanced solid waste processing technology with particular emphasis on processes stilil under development. Incinerator and pyrolysis design for heating value recovery and effluent recovery. Separation for recovery of valuable raw materials. Other modern techniques. Prerequisite: adviser's permission.

CH 752 Alr Pollution Engineering Control* 21/2:0:3
 Pollutant emissions control; analysis of pollutant properties,

 concentrations and boundary conditions; absorptive, and reactive recovery processes for moving and stationary sources; formation and removal of gaseous oxides ($\mathrm{NO}_{x}, \mathrm{SO}_{x,} \mathrm{CO}$, etc.) and of aerosois and other particulates. Prerequisite: adviser's approval.Also listed under CE 758
CH 753 Dispersion of Pollutants ${ }^{*}$ 21/2,0:3 Introduction to theory of diffusion of poliutants and methods for estimation of dispersion in atmosphere. Nature of mean and turbulent motions in various urban, rural, valley environments; effects of these on dispersion of pollutants. Mean and turbulent motions in oceanic and coastal waters and fresh-water bodles. Dispersion of pollutants in sea, lakes, rivers.
Aleo listed under CE 753
CH755 Air Pollution Chemistry*
$2 y_{2}: 0: 3$
Significant chemical reactions occurring in lower atmosphere and basic chemistry required to understand problems peculiar to air pollution field. Aiso, chemistry applicable to fuels combustion and other sources of atmospheric poliution.
Also listed under CE 755

CH 756 Air Pollution Analysis*
2:3:3
Principles of reaction or physical measurement used for variety of analytical equipment employed in air pollution studies Analysis of various atmospheres and evaluation of results. Also listed under CE 756

CH 757 Alr Pollution Effects*

21/2:0:3
Effects of atmospheric poliution on various forms of life, including both direct and secondary effects. Corrosion or contamination of inert matter by pollutants in the atmosphere. Legal aspects and community organization for control of atmospheric poltution.
Also Ifsted under CE 757

CH 760 Enerty Reaources, Conversion Technotogy

 Distribution Ufilization*21/2:0:3
Comprehensive study of the energy problem in terms of available and potential resources of primary energy, converslon technology, distribution and utilization, with emphasis on both economic and technical factors. Present and possibie future environmental impact. Prerequisite: instructor's permission.

CH 766 Process Meat Transfer*

$21 / 20.0 .3$
Thermal design of industrial heat exchangers, including condensers and forced and natural circulation reboilere; process design of fired heaters; optimum use of extended surface; heat transfer and power requirements of agltated jacketed veesels. Prerequisite: instructor's permission.

CH 771 Chamical Engineering

 Thermodynamies I21/2:0:3
Laws of thermodynamics; conditions for thermodynamic equilibria; use of equations of state and the princtple of corresponding states to determine changes in thermodynamic properties for pure substances and mixtures. Chemical potential, standard states, ideal solutions, introduction to chemical and phase equilibria. Prerequisite: CH 251 or equivalent

CH 772 Chemical Engineerlig

 Thermodynamics it$21 / 200: 3$
Advanced treatment of chemical and phase equilibria phase rule, Gibbo-Duham equation, non-ideal solutions; stablity of thermodynamic systems, osmotic pressure, surface teneion, thermodynamic equilibria in potentlal fields; fntroduction to irreversible thermodynamics. Prerequisite: CH 771 or equivalent.

CH 781 Chemical Proceas Kinatics
21/20:0:3
Reactor analysis and design; segregation and maximummixedness, seiectivity in laminar and dispersed flows, variable density flows; numerical and statistical analysis of nonlinear systems; multistage reactors, shemisorption and pore diffusion; steady-state multipliclty; packed bed momentum transport; solid-gas flow reactors. Prerequisite: CH 322.

CH 782 Chemical Reactor Design,

 Simulation Control*21/2.0:3
Design of industrial reactors, optimization of reactors, dynamic behavior of reactors, modeling of reaction rates, computer simulation of reactors, stability and control of reactors. Case studies. Prerequisite: CH 781 or equivalent.

CH 784 Catalyble*
$21 / 200,3$
Catalylic processes and engineering problems associated with each process. Review of catalytic chemistry, relatlonships between chemistry and choice of processing conditions with choice of catalyst composittion and structure. Experimental methods in catalylic research; relation of processing conditions to chemistry snd transport effect. Prerequisite: CH 781 or equivalent.

CH 791 Electrochemical Engineering*
21/20:3
Theory and measurement of reversible and inreversible electroshemical processes at metalelectroiyle interfaces. Thermotynamics, kinetics, mass transport, mixed potentlal theory, assivation. Modem experimental techniques. Electrochemical nergy conversion devices (batteries and fuet cells). Preretisite: CM 162 or equivalent.

CH 815 Appled Mathematics in Chemical

 Engineering* $21 / 2: 0: 3$ Mathematical formulation of chemical engineering problems in terms of ordinary, partial differential and difference equations Solutions of boundary and initial value problems using Grean's functions and other techniques. Characterization of secondorder partial differenttal equations and properties of their solutions. Asymptotic methods, numerical techniques. Prerequisite: MA 260 or MA 531 or instructor's permission.
CH 819 Machine Computation in Chemical Engineering*

21/200-3
Digital computer applications in chemical engineering. Topics include programming languages such as FORTRAN, analog simulation languages such as CSMP and general simulation techriquea using GPSS. Applications to material and energy balances, design and optimize distillation processes, heat transter apparatus, process flow sheets, use of matrix methods in formulating and solving chemical engineering problems. Prerequisite: CS 100 or equivalent

CH 821 Process Dynamles and Control
21/2:0:3
instrumentation and controt of chemical processes from viewpoint of system engineering. Unsteady state behavior of chemical engineering systems. Analysis of closed-loop feedback systems for controf of variables of chemical process equipment. Prerequisite: CH 351 or equivalent.

CH841 Research Instrumentation*
21/2:5:6
Laboratory course in electrontics for students who find it necessary to use electronic instrumentation in research programs. Malmstadt/Enke instrumentation Laboratory used. Topics include power supplies, vacuum-tube and solid-state amplifiers, oscillators, servo-systems, operational amplifiers and digital instrumentation. Prerequisite: adviser's approval.
Also fisted under CM 712, BE 622 and SA 605
CH 851852 Process Design and Synthesis $1, I^{* *}$ each $21 / 2,0-3$ Design of complex chemical process piants. Use of optimization techniques in design. Selection of design techniques and process aiternates. Evaluation and design of projects in the light of uncertainty. Factors affecting design and erection of piants such as market, plant location, raw materials availability. CH 851 prerequisite: CH 781 or equivalent. CH 852 prerequisite: CH 851.

CH 862 Rheology of Nor-Newtonian Flulda*
 $21 / 2=0.3$

Classification of non-Newtonian viscoelastic fluids. Derivation of theological equations of state from continuum mechanics point of view. Molecular viscoelastic theories: random-coil theory and network theory. Experimental characterization of non-Newtonian fluids; steady and dynamic experiments, measurements of normal stress differences in shear flow. Engineering applications to polymer processing operations. Prerequisites: CH 631, MA 531 and MA 532 or equivalent.

CH 872 Fundamentals of Blochemical

 Englineering$21 / 2,0,3$
Kinetica of enzymatic reactions. Transport phenomena in microbial systems. Design and analysis of biochemical reactors. Principles of natural product isolations. Genetic engineering and chemical processes. Prerequisite: CH 631.

CH 900-901 Selected Toples in Chemical

Englneering*
each $21 / 20: 0: 3$
Topics of special current interest in chemical engineering, as announced in advance of a particular semester offering. Prerequisite: advlser's approval.

CHERT Energy Pollcy Isaues
$21 / 0: 3$
See Energy Program for details.

CH 928 Energy Respurce Dlatribution and Conversion Technology

$21 / 2.0: 3$
See Energy Program for detalis.
CH 835 Engineering Prolects Relsted to Public Administration
each 3 units
See Polytechnic's Cooperative Program with New York University's Graduate School of Public Administration for details.

POLYMER SCIENCE AND ENGINEERING

CH 917 Introduction to Polymeric Materials
21/2.0:3 Principles of technological aspects of polymerization, compounding and processing of polymeric materials, their properties and applications. Thermoplastic materials such as polyethytene, polypropylene, polyinyi chloride, polysiyrene, acryilcs and engineering plastics will be discussed. Thernosetting materials to be covered include: phenolics, epoxies, unsaturated polyesters, aminoplastics, polyurethanés and sillcones. Prerequisite: CM 123 or equivalent.

CH 821 Polymer Processing
21/2.0.3
Applications of engineering principies of polymer processing. Study of non-Newtonian polymeric systerns. Extrusion theory and applications. Discussions and problem-soiving in compression, transfer and injection molding, thermoforming and plasticizatlon, es well as other polymer engineering processes. Prerequisites: CH 220 and CH 221 or instructor's permission.

CH 822 Polymer Processing Laboratory 0:4:3 Laboratory study of engineering principles and processes invoived in polymer processing and analysis. Experiments involved in polymer processing and analysis. Experiments inciude injection molding, extrusion, thermoforming, mixing and compounding, melt rheology, flat- and blown-film extrusion, blow molding, etc. Prerequisite: CH 921.

CH 823 Industrial Polymerization PTocesses * \quad 21/20:3 Analytical study of princlpal processes used to synthesize polymers, including polymer engineering operations, equipment, polymerization control, instrumentation, process economics. Emphasis on development and solution of polymer plant englneering problems. Prerequisite: CM 771 .

CH 928 Englneering Properties of Polymers
Study of mechanical properties and structure of solid polymers.
Study of mechanical properties and structure of solid polymers. Viscoelastic theory and response of amorphous, orystalline and composite materials in stress-strain tests, creep, stress relaxation and dynamic tests. Effects of orlentation, and previous history on mechanical behavior. Prerequisites: CH 915 , CM 77 .

CH 833 Coatings Technology
$21 / 2.0 .3$
Chemistry, manufacture and applicatlons of organic fitm formers; soivents and solubility principles; mechanisms and methods of film application, formation, conversion. Chemistry manufacture and appHcations of pigments. Principies and methods of pigment disperslon and coatings preparation, including influence of rheology and surface chemistry. Principles of formulation of important paints and clear coatings. Speciffcations and test methods for coatings. Prerequisite: CM 123 or equivalent.

CH 840041 Selected Topies in Polymer

Scienca and Engineering 1, II*
each $21 / 2.0: 3$
Topics of special interest in polymeric materials as announced in advance of particuiar semester offering. Prerequisite: adviser's approval.

PROJECT, THESIS AND SEMINAR

CH 902 Guided Studies in Chembeal

 Englineering6 units, each 2 unlts
Selection, analysis, solution and presentation of an engineering report of some problem in process or equipment design, thermodynamic study or correlation, or another fieid of chemical engineering practice under supervision of staff mamber. Conterences scheduled. Candidates for master's degree re quired to submit three unbound copies of typewritten report to advisers one week before the last day of classes. Prerequisite: degree status.

CH 930 Gulded Studles in Polymer Sclence and Engineering 6 units, each 2 units
 Selection, analysis, solution and presentation of a comprehen-

 sive report of some problem involving polymeric materials, such as polymer synthesis, processing, evaluation, equipment design, etc. Conducted under supervision of staff member. Conferences scheduled. Candidates for master's degree re quired to submit three unbound copies of typewritten project report to advisers one week before last day of classes. Prerequi. site: degree status.
CH 887 Thesls for Degree of Master of Sclence in Polymer Sclence and Engineering
 9 units, each 3 units

Thesis for master's degree in polymer science and engineering should give results of original investigation of a problem th the chemistry and chemical engineering of polymeric materials. Thesis may involve experimental research, theorettcal analysis, or process design, and possibly a combination thereof. Candidates for master's degree required to submilt four typewritten unbound thesis copies to advisers before or on seventh Wednesday prior to commencement. Prerequisite: degree status.

CH 989 Dissertation for Degree of Doctor of Phillosophy in Polymer Sclence and Engineering
 30 untss, each 3 units

Soe description for CH 999 . A wide varlety of problems may be setected from topics in polymer science and engineering. Prerequisite: see CH 999.

CH 891.992 Seminar in Chemical Engineering nc Recent developments in the field of chemical engineering presented through lectures given by engineers from industry, research and educational institutions, by staff members and by qualified graduate students. Required for two semesters of all graduate students seeking degrees.

CH 897 Thesis for Degree of Master of Sclence in

 Chemical Engineering9 units, each 3 units Thesis for master's degree in chemical engineering should give results of original investigation of a problem in chemical engineering or application of physical, chemical or other scientific principles to chemtcal engineering. Thesis may involve experimental research, theoretical analysis or process design, and possibly a combination thereof. Candidates for master's degree required to submit four typewritten unbound thesis copies to advisers before or on seventh Wednesday prior to commencement. Prerequisite: degree status.

CH 998 Chemical Engineering
 Design Prolect

9 units, each 3 units
Engineering analysis, synthesis, optimization and design of a process or novel equipment. Project requifes original individual work. Evaluation of results, use of engineering judgment and excellence in reporting emphasized. Conducted under supervision of staff member. Conferences scheduled. Candidates for engineer degree required to submit four unbound coples of typewritten project report to advisers before or on the seventh Wednesday prior to commencement. Prerequisite: degree status.

ciH 999 Dlssertation for Degree of Doctor of Phllosophy in Chemical Engineering

30 units, each 3 units Dissertation must give results of independent investigation of a problem in chemical engineering and may involve experimental andfor theoretical work. Thesis must show ability to do creative work and that an original contribution has been made to chemical engineering, which is worthy of publication in recognized journais. Candidate required to take an oral examination on subject of thesis and on related topics. Candidates for doctor's degree required to submit five unbound thesis copies to advisers before or on seventh Wednesday prior to commencement. Prerequisite: degree status and a qualifying examination on quantitative aspects of chemical engineering.

FACULTY

Chang Dae Han, Protessor and Head of Chemical Engineering
B.S., Seoul National University; M.S., Sc.D., Massachusetts Institute of Technology; M.S., Newark College of Engineering; M.S., New York University
Rheology, polymer processing, process control
Robert C. Ackerberg, Professor of Chemical Engineering B.S., Massachusetts institute of Technology; M.S.E., University of Michigan; M.A., Ph.D., Harvard University Fluid mechanics, applied mathematics, thermodynamics

Robert F. Benenati, Professor of Chemical Engineering B.Ch.E., M.Ch.E., Ph.D., Polytechnic Institute of Brooklyn
Compufer applications to process design, packed and fluidized beds, heat transfer

James J. Conti, Professor of Chemical Engineering and Vice President for Educational Development B.Ch.E., M.Ch.E., D.Ch.E., Polytechnic Institute of Brooklyn
Transport processes, biomedical engineering
William H. Kapfer, Professor of Chemical Engineering B.Ch.E., M.Ch.E., Eng.Sc.D., New York University Polymeric materials, plant design economics

Efi M. Pearce, Professor and Head of Chemistry
B.S., Brooklyn College; M.S., New York University; Ph.D., Polytechnic Institute of Brooklyn
Polymer synthesis and degradation
Leonard I. Stiel, Associate Professor of Chemical Engineering
B.S., Massachusetts Institute of Technology; M.S., Ph.D., Northwestern University
Thermodynamic Properties of Mixtures, Properties of Polar Fluids.

Edward N. Zlegler, Associate Professor of Chemical Engineering
B.Ch.E., CCNY; M.S., Ph.D., Northwestern University Kinetics and reactor design, air pollution control, luidization

Jovan Mijovic, Assistant Professor of Chemical Engineering
B.S., University of Beigrade; M.S., Ph.D., University of Wisconsin (Madison)
Polymer morphology, tracture properties of polymers, adhesives and composites

Paul F. Schubert, Assistant Professor of Chemical Engineering B.S., University of Notre Dame; Ph.D., Cornell University Transport processes, separation sciences, biochemical engineering

ADJUNCT FACULTY

Herbert W. Cooper, Adjunct Professor of Chemical Engineering
B.Ch.E., M.Ch.E., CCNY; Eng. Sc.D., Columbia University
Process equipment design, high temperature processes, heat transfer
W. Lincoln Hawkins, Adjunct Professor of Chemical Engineering
Chem. Eng., Rensselaer Polytechnic Institute; M.S., Howard University; Ph.D., McGill University; LL.D (Hon.), Montclair State College
Degradation and stabilization of polymers, recycling of plastics

Joseph W. Prane, Adjunct Professor of Chemicai Engineering
B.Ch.E., CCNY; M.S., Columbia University

Polyurethanes, polyesters-alkyd resins, surface coatings

EMERITUS FACULTY

Paul F. Bruins, Professor Emeritus of Chemical Engineering
B.S., Centra! College, lowa; M.S., Ph.D., lowa State University; D.Sc. (Hon.) Polytechnic Institute of New York
Plastics technology, electrochemistry, materials science

Warren L. McCabe, Dean of Faculty Emeritus B.S., M.S., Ph.D., University of Michigan

Donald F. Othmer, Professor Emeritus of Chemical Engineering
B.Ch.E., D.Sc., University of Nebraska; M.Ch.E., Ph.D., University of Michigan; D.Eng. (Hon.), New Jersey institute of Technology
Energy conversion process, thermodynamics of phase equilibria
W. Fred Schurig, Professor Emeritus of Chemical Engineering
B.Ch.E., M.Ch.E., D.Ch.E., Polytechnic institute of Brooklyn

CHEMICAL PHYSICS

GRADUATE DEGREE PROGRAMS

Abstract

The chemical physics program at Polytechnic is designed to train students for careers in those areas common to chemistry and physics. It provides, within the scope of a normal graduate program, an unusual overlap of studies in both departments, emphasizing aspects that are closely related to both fields. Typica! areas of interest include aspects of quantum and theoretical chemistry, statistical mechanics, solid-state physics and chemistry, molecular structure, x-ray crystallography, nuclear and electron resonance, the structure of liquids, the study of surfaces, and biophysics.

Students normally enter the program with undergraduate degrees in chemistry, physics or mathematics. All applicants should take the Graduate Record Examination. Students spend the first year in the program developing competence in those areas of chemistry, physics and mathematics that are outside their undergraduate training. Guided by the graduate adviser, students select a plan of study suited to their individual needs and interests; thus there are no formal specific course requirements for a master's or doctor's degree. Representative first-year programs for students entering graduate study in chemical physics are given below.

Representative Program for First-Year Students

No.	Required Subjects	Units
CM 705	Introduction to Chemical Physics	6
MA 830	Complex Variables	3
MA 839	Introduction to Functional	
	Analysis	3
CM/PH 995-	Seminar in Chemical	
996	Physics	3
CM 971-972	Chemistry Colloquium	0
Or		
PH 901-902	Physics Colloquium	0

Students with baccalaureate degrees in chemistry:

MA $260 \quad$ Vector Analysis and Partial Diff. Eqs.
PH 3i3-314 Introduction to Theoretical Physics6

Students with baccalaureate degrees in physics:

CM 161-162	Physical Chemistry 1, I1	6
CM 601	Inorganic Chemistry	$41 / 2$
Thesis, project and/or electives		
chosen from chemistry, physics,		
mathematics		$11-14$

CM 601 Inorganic Chemistry 41/2
Thesis, project and/or electives
chosen from chemistry, physics, mathematics

REQUIREMENTS FOR THE MASTER'S DEGREE

The program of study for the degree of master of science in chemical physics offers three options, each requiring 36 units. One option, including early formal research, consists of a 12 -unit thesis and 24 units of required and elective courses. In another option, candidates with suitable experience may substitute a sixunit project and six additional electives for the 12 -unit thesis. The project requires a literate and critical discussion of the current status of a specialized area of research and demonstration of the student's professional maturity. The project is completed by the submission of an acceptable written report and by its satisfactory defense in an examination.

The third option emphasizes a strong formal training in courses and is acceptable as well as advised only for students planning to proceed to the doctorate. The Ph.D. qualifying examination will generally serve as the M.S. final examination. Satisfactory passing is required.

No. CM 971.972 or	Required Subjects Chemistry Coltoquium	Units 0
PH 901.902	Physics Colloquium	0
$\begin{array}{r} \text { CM/PH 995- } \\ 996 \end{array}$	Seminar in Chemical Physics (to be taken with either colloquium)	
and one of the following:		
CM 9981		
PH 999	Thesis in Chemical Physics	12
Electives* or		at least 21
CM 9981		
PH 999	Project in Chemical Physics \dagger	6
or \ddagger		
Electives*		at least 33
		at least 36

A reading knowiedge of French, German, Japanese or Russian is required; students whose native language is not English will be required to demonstrate adequate mastery of English.

[^3]
REQUIREMENTS FOR THE DOCTOR'S DEGREE

The requirements for the doctorate conform to the general regulations given elsewhere in this catalog. Both the major and minor fields are generally chosen from the areas of chemical physics, chemistry, physics and mathematics. The student is expected to pass examinations which form part of those regularly given to graduate students in the Departments of Chemistry and Pfysics. The candidate must also demonstrate a reading knowledge of scientific French, German, Japanese or Russian. Students whose native language is not English will be required to demonstrate adequate competence in English.

The most important requirement is the preparation of a dissertation embodying a substantial research contribution in chemical physics.

Students may apply for admission to the chemical physics program either simultaneously with their application for admission to the graduate school or at some later time. Special application forms, as well as additional information, are available from the Office of the Dean of Arts and Sciences.

FACULTY INTERDEPARTMENTAL COMMITTEE

*Bemard J. Butkin, Professor of Chemistry and Dean of Arts and Sciences; Chairman, Chemical Physics Committee
*Ronald D. Parks, Professor and Head of Physics
Emest M. Loebl, Professor of Chemistry
*Eli M. Pearce, Professor and Head of Chemistry
Benjamin Post, Professor of Physics and Chemistry
\section*{PARTICIPATING FACULTY}
Ephraim Banks, Professor of Chemistry
Patrick T. Cahill, Professor of Physics
Hellmut J. Juretschke, Professor of Physics
Nomman C. Peterson, Professor of Chemistry
Stephen Arnold, Associate Professor of Physics
Bruce A. Garetz, Assistant Professor of Chemistry
Sophia Merajver, Assistant Professor of Chemistry
*Ex officio

CHEMISTRY

Chemistry is concerned with our ever-expanding knowledge of the structure, properties and reactions of matter and our evolving theories to explain our observations, predict chemical behavior and suggest experiments.

The classical divisions of chemistry were organic chemistry, dealing primarily with compounds of carbon; inorganic chemistry, concerned with all other compounds; analytical chemistry, concerned with qualitative and quantitative determinations of compositfion; and physical chemistry, which seeks to provide an understanding of the properties of matter, including chemical bonds and molecular interactions. These classical fields have overlapped increasingly, however, and several inter-disciplinary fields of study are now of great importance. Examples are biochemistry, electrochemistry, photochemistry, polymer chemistry and chemical physics. Thus, biochemistry integrates the biological sicences with classical chemistry and polymer chemistry.

Polytechnic's Department of Chemistry offers a fuil complement of undergraduate and graduate courses in important aspects of modern chemistry. Graduates are prepared for meaningful positions with educational instifutions, research institutes, industrial organizations and government laboratories.

The department is active in research, with staff members conducting and supervising research at both undergraduate and graduate levels. This research is combined with teaching so that courses at all levels are taught by chemists who are highly competent in their respective fields.

The participation of undergraduates in a variety of research activities provides them with both stimulus and exceptionally good preparation for graduate school or a professional position.

The department offers programs leading to the degrees of bachelor of science, master of science, and doctor of philosophy in chemistry, and the degree of master of science in industrial chemistry.

The department also offers programs jointly with the Department of Physics and the Department of Chemical Engineering as described below.

CHEMICAL PHYSICS PROGRAM

Chemical physics is an interdisciplinary program designed to train students for careers in those areas common to chemistry and physics. Administered jointly by the Departments of Chemistry and Physics, it provides, within the scope of a normal graduate program, a flexible course of study in both departments. The program leads to the degrees of master of scj ence and doctor of philosophy. (For details, see special listing on page 57 .)

POLYMER SCIENCE AND ENGINEERING

Polymer science and engineering is an interdisciplinary program, administered jointly by the Departments of Chemistry and Chemical Engineering, leading to the degrees of master of science and doctor of philosophy. (For details, see special listing on page 231.)

UNDERGRADUATE PROGRAM

For the student majoring in chemistry, the Department of Chemistry provides a curriculum that goes beyond the educational requirements of the American Chemical Society for professional training. The courses offered are professional courses designed to prepare the candidate for graduate study or for work in industry.

Bachelor of science degrees are certified by the ACS, and graduates are immediately eligible for membership in the American Chemical Society.

Requirements for the Degree of Bachelor of Science in Chemistry

Credits
CM 101, 102, 108, 109, 111, 112, 118-120,
122-125, 161, 162, 175, 177,501, 504 45
Advanced Chemistry 3
Thesis research (CM 390-394) 10
CS 100 2
MA 101-104 14
PH 101-103 10
The minimum of 128 credits required for the degree of bachelor of science in chemistry inciudes a minimum of 30 credits in humanities/social sciences.

Curriculum for Bachelor of Science in Chemistry

Freshman Year

First Sermester			Hours/Week	
No.	Subject	Cl.	Lab.	Ct
CM 101	General Chemistry 1	$2{ }^{1 / 2}$	0	21/2
CM 111	General Chemistry Lab. I	0	$11 / 2$	1/2
	Hum./Soc. Sci. electives	6	0	6
MA 101	Calculus 1	4	0	4
PH 101	Introductory Physics I	3	0	3
PE 101	Physical Education	0	2	0

Sophomore Year

CM 122	Organic Chemistry 1		0	3
CM 124	Organic Chemistry Lab. 1	3/10	5	2
	Hum./Soc. Sci. electives	6	0	6
MA 103	Calculus 1 It	3	0	3
PH 103	introductory Physics itl	2	$11 / 2$	3
PE 103	Physical Education	0	2	0
				17
Junior Year				
CM 108	Inorganic Chemistry	3	0	3
CM 109	Inorganic Chemistry Lab.	0	3	1
CM 118	Chemical Equllibria	2410	5	4
CM 162	Physical Chemistry II	3	0	3
CM 501	Chemical Literature	1	0	1
	Hurn/Soc. Sci. electives	3	0	3
	Electives			2

Senior Year

CM 175	Adv. Physical Chemistry	4	0	4
CM 390-397	Bachelor's Thesis			4
	Hum./Soc. Sci. electives	3	0	3
	Electives			$\frac{3}{14}$

	Advanced Chemistry	3	0	3
CM 392-394			6	
	Thesis			5
Electives			14	

Total credits required for graduation: 128

BIOCHEMISTRY OPTION

Freshman and sophomore courses as above.

Junior Year

First Semester		Hours/Week		
No.	Subject	Cl.	Lab.	Cr .
LS 105	Bioiogy !	3	0	3
LS 115	General Biology Lab. 1	1	3	2
CM 118	Chemical Equilibria	23^{5}	5	4
CM 162	Physical Chernistry it	3	0	3
CM 201	Biochemistry I	3	0	3
CM 501	Chernical Literature	1	0	1

Senior Year

CM 108	Inorganic Chemistry	3	0	3
CM 109	Inorganic Chemisty Lab.	0	3	1
CM $390-391$	Bachelor's Thesis			4
	Hum./Soc. Sci. electives			3
	Electives			$\underline{3}$
				14

CM 119	Analytical Chernistry	3	0	3
CM 120	Analytical Chemistry Lab.	0	6	2
CM 392-394	Thesis			6
	HumJSoc. Sci. electives			3
	Electives			$\underline{2}$
				16

Total credits required for graduation: 128

HU 101,200 or 201, SS 104	9
Technical elective	3
Humanities/Social Science Electives*	21
Free Electives*	12
PE 101-104	-
	128

In humanities and social sciences, the student must take HU 101 and either HU 200 and SS 104 or IS 140 and IS 141. Students who are placed in HU 103 on the basis of the English Composition Placement Test administered at Polytechnic to all incoming students may substitute HU 103 for HU 101. Students placed in HU 008 or HU 009 must complete this noncredit writing course before taking HU 101 (or HU 103).

In addition, the student is strongly urged to select an area of concentration (such as literature, communications, the arts or philosophy and comparative religion in the Department of Humanities, or political science, economics, history, anthropology or psychology in the Department of Social Sciences) and to elect two or three courses in this concentration, in consultation with the departmental adviser. A modern language may be chosen as a suitable concentration, but a student without prior knowledge of the language must plan to devote at least 12 credit hours to the subject.

For the remaining credits in the humanities/social sciences requirement, the student should select courses in areas other than that of the concentration. Additional courses in the humanities and social sciences may be taken as free electives.

CM 201, CM 502 or a graduate course may be used as the advanced chemistry course. Students with a strong interest in mathematics may substitute MA 111-114 for MA 101-104.

Students wha special interest in blochemistry may etiminate CM 175 and the technical elective but must include the following: $L S$ S $105-106$, LS 115-116, CM 201-202 and CM 204. If 15 recommended that LS 106-106, LS 115-116 be taken in the junior year by deferring the necessary credits of humanitiesisocial sciences. The requirement for an advanced chemistry course is walved for students taking the biochemistry option.

All laboratory courses in chemistry require a breakage deposit.

The department does not usually grant transfer credits for students who, while registered at Polytechnic, take chemistry courses at other schools.

[^4]
TEACHING CERTIFICATION

Students wishing to obtain certification for teaching in the public schools of the New York City area may take education courses off campus and receive credit at Polytechnic for these courses as free electives. Approval for courses to be taken at another college must be obtained in advance from the major department and the academic dean.

GRADUATE STUDY

Admission to graduate study in chemistry requires a sound foundation in mathematics, physics and chemistry. College preparation should include at least four semesters of mathematics, two semesters of physics and chemistry (analytical, inorganic, organic and physical). In addition, it is desirable for a student to have had differential equations, atomic and nuclear physics, and two years of German, Russian or French. Chemistry graduate students cannot take CM $500 \dagger$ courses for graduate credit.

REQUIREMENTS FOR THE MASTER'S DEGREE

Chemistry

A total of 36 units past the bachelor's degree is required with an overall grade point average of $\mathrm{B}(3.0)$ or better in all courses (exclusive of thesis research) submitted for the master's degree. Programs must include four courses from among the following:

No.	Subject	Units
CM 601	Inorganic Chemistry	$48 / 2$
CM 705	Chemical Physics	6
CM 771	Introductory Polymer Chemistry	3
CM 801	Theory of Analytical Pracesses	$41 / 2$
CM 903	Advanced Organic Chemistry	$41 / 2$
CM 941	Biochemistry	3

Students may eiect research and a thesis (12 units). An oral defense of the thesis is held after the typed thesis has been submitted. A grade of A or B in thesis research is required.

Students not electing the thesis are required to take 36 units of guided studies with submission of a written report (CM 871-972).

Students in the master's program must participate in seminar for two semesters (CM 973-974); those electing no thesis must present at least one lecture to the seminar group.

All master's students must take CM $504 \uparrow$, Chemical Laboratory Safety.

Additional requirements not measured in units are:
Demonstration of competence in one acceptable foreign language: in general, German, Russian or French. Students whose native language is not English must also demonstrate competence in English.

Continuous attendance at departmental colloquia.

Industrial Chemistry

The Department of Chemistry offers a master of science in industrial chemistry. Students electing this program are required to take the following courses:

No.	Subject	Units
CM 950-	Industrial and	
951	Engineering Chemistry I, It	6
MG 600	Management Process	3
MG 865	Management of innovation, Technological Change, Research and Development	3
CM 760	Minicomputer Instrumentation for Scientific Research	
$\begin{gathered} \text { or } \\ \text { MA } 531 \end{gathered}$	Applied Mathematics for Engineers	
CM 955	Project in Industrial Chemistry	3-6
CM 504 ${ }^{\text {¢ }}$	Chemical Laboratory Safety	0

At least 12-15 units must be taken from graduate courses in chemistry numbered above 600.

The remaining units are to be chosen from the following list and from other graduate courses in chemistry:

SS 672	Technological Forecasting	3
CH 915-916	Introduction to Polymeric	
	Materials I, II	3 each
CH 921	Polymer Processing	3
HU 605	Technical Writing	3
CM 502	Environmental Chemistry	3

REQUIREMENTS FOR THE DOCTOR'S DEGREE

Formal admission to the doctoral program requires passing a set of qualifying examinations at the level of the bachelor's degree in chemistry.

A total of 90 units past the baccalaureate degree level is required. A grade point average of B or better is mandatory in all courses (not including dissertation research) submitted for the Ph.D. degree, and a grade of A or B is required for the dissertation. The program includes the following courses, the first four in which the student must have at least a B average:

1. Course	Subject	Units
CM 601	Inorganic Chemistry	$41 / 2$
CM 705	Chemical Physics	6
CM 801	Theory of Analytical	
	Processes	$41 / 2$
CM 903	Advanced Organic Chemistry	$41 / 2$
CM $504 \dagger$	Chemical Lab Safety	0
2. A major		12
3. A minor		
4. Participation in seminar for four	6	
semesters, twice as a lecturer.		
5. Research presented in a dissertation.	45	
6. Demonstration of competence, at a level		
higher than that required for the master's		
degree, in an acceptable foreign language:		

in general, German, Russian or French. Students whose native language is not English must also demonstrate competence in English.
7. By the end of the second year, the student is required to pass a preliminary examination, administered by the Guidance Com. mittee, which may consist of written and oral portions.
8. Attendance at seminars and colloquia for the duration of research.
9. Passage of a final oral examination. The final oral examination will take place after the members of the Guidance Committee have read the dissertation in typed, unbound form.

All students in the doctoral program will be awarded the master of science degree upon satisfactory completion with a grade of A or B in course requirements equivalent to the above in addition to 12 units of research toward the doctoral dissertation, as certified by the chairman of the Guidance Commitfee. On proper application to the dean of the graduate studies and after completion of the preliminary examinations, the student will be certified as having earned the master of science degree.

All students should consult the current departmental bulletin, information for Chemistry Graduate Students, for most recent guidelines for Ph.D. students.

UNDERGRADUATE COURSES

CM 091 Principles of Chemistry I* *
 21/2:11/2:3

Basic principles of chemistry with emphasis on historical origins. States of matter, modern concepts of atomic and molecular behavior in relation to chemical processes. Introduction to chemical equilibrium and kinetics. Selected faboratory experiments. For sludents majoring in humanities or social sciences. Lab fee required.

CM092 Princtples of Chemistry $\mathrm{II}^{*} \quad$ 21/2:11/2:3

 Basic principles of descriptive inorganic and organic chemistry with applications to electrochemistry, polymer chemistry, biochemistry. Selected laboratory experiments and introduction to quantitative iaboratory techniques. For students majoring in humanites or social sciences. Lab fee required. Prerequisite: CM 091.
CM101 General Chemlstry I
 21/2:0:21/2

 Chemical conservation laws, states of matter, acid-base and oxidation-reduction theory, introduction to chemical thermodynamics and chemical equilibrium, electro-chemistry, kinetics.CM 102 Generai Chemlstry II $\quad 21 / 2: 022^{1 / 2}$ Atomic and molecular structure, periodic table, descriptive inorganic chemistry, introduction to organic chemistry including polymer and biochemistry, and photochemistry. Prerequisites: CM 101, CM 111.

CM 108 Inorganic Chemlatry 300:3 Atornic structure of elements as baeia for periodic classlfication. Descriptive chemistry of eiennents and their compounds. Theory of chemical bonds and introduction to coordination chemistry. Prerequisites: CM 102, CM 112 and CM 161.

CM 108 Inorganic Chemlatry Laboratory

0.3:1

Laboratory experiments introducing techniques employed in preparation and characterization of inorganic substances. Lab fee required. Prerequisites: CM 102, CM 112 and CM 161.

CM 111 General Chemlatry Laboratory I $0.11 / 2: 1 / 2$
introduction to chernical laboratory procedures. Laboratory assoclated with the lecture course, CM 101. Lab fee required.

CM 112 General Chemistry Laboratory II
$0.11 / 2: 1 / 2$
Laboratory experiments in qualitative analysis to be taken in conjunctlon with CM 102, Lab fee required. Prerequisites: CM 101, CM 111.

CM118 Chemical Equillbria
21/3:5:4
Equilibria in homogeneous and heterogeneous chemical processes. Applications of equilibrium concepts and data to analytical and physical chemistry. Theory of titrations and other analytical processes. Thermodynamic and chemical interpretations of equitibrium data Separation, techniques. Lab fee required. Prerequisites: CM 161-162.

CM 119 Instrumental Merhods in Analytical Chemiatry

3:013
Theory and application of instrumental techniques in modern anelytical chemistry, inciuding chromatography, spectroscopy (ultraviolet absorption, fluorescence, infrared, Raman, nuclear magnetic resonance, electron spin resonance, atomic absorption and emission) X-ray absorption, fluorescence and diffraction, mass spectrometry, thermal methods, stc. Prerequisites: CM 181 -162.

CM 120 Aralytical Chemlatry Laboratory

$0: 62$
Techniques described In CM 119 applied to various chemical problems stressing physiochemical interpretation of data obtained. Lab fee required. Prerequisites: CM 118, CM 119 and CM 161-162.

CM 122 Organic Chernistry 1
3.0:3

Chemistry of organic molecules: structure, nomenclature, properties and reactions of carbon compounds with emphasis on aliphatic compounds. Introduction to reaction, mechanisms, stereochemistry, spectroscoplc methods. Prerequisites: CM 102 and CM 112.

CM 123 Organk Chemletry II 3012
Continuation of CM 122 with emphasis on aromatic chemistry, condensatlon reactions, carbohydrates, amino acids and synthetic polymers. Prerequisite: CM 122.

CH 124 Organic Chemlstry Laboratory 1

1/2:5:2
Laborelory methods for preparation, fsolation and purification of typical organic compounds. Experiments chosen to illustrate basic techniques. Lab fee required. Prerequlsite: CM 122

CM 125 Organic Chemlstry Laboratory II
1/s:5:2
Laboratory methods for preparation, puriftcation, characterization and identification of organic compounds by chemical and physical mesins. Introduction to use instrumental methods of enalysis and identification. Lab fee required. Prerequisites: CM 123 and CM 124.

CM 181 Phyalcal Chemrintry I
3:0:3
Chemical therroodynamice (macroscoplc and molecular approach) with applications to solutions, phase and chemical equillbris. KInetic theory. Prerequisites: CM 102, CM 112, MA 103 and PH 103.

CM 162 Phyelcal Chemlatry II
3:0:3
Electrochemistry; lonic solutions. Solids, liquids, surfaces, high polymers. Chemical kinetics. Pelation of bulk properties of matter to atomic and molecular propertles. Prerequisite: CM 161.

CM 164 Physlcal Chemistry of Living Systems
$3: 0 ; 3$ Basic concepts of physical chemistry illustrated by examples of physiological significance. Thermochemistry, chemical equiIlbrla, equilibria in coupied processes, electrochemistry, diffuston, determination of molecular welght of macromolecules, spectroscopy, reaction kinetics and use of isotopes. This course may not be used in fulfiliment of physical chemistry requirements for the B.S. in chemistry. Strong students may, with an instructor's permission, present this course as a prerequisite for CM 201 . Prerequisites: CM 102, CM 112, MA 103 and PH 103.

CM 175 Physical Chernistry III* ${ }^{*}$

4004
Atomic and molecular aspects of physical chemisiry. Quantum chemical and statistical description of matter with applications to molecular spectroscopy, binding and structure. Prerequisites: MA 104 and CM 182

CM 177 Physlcal Chemistry Laboratory

1/s:5:2
Experlmental methods of physical chemistry. Chemical kinetics, thermodynamics, electrochemistry, molecular spectroscopy, high vacuum, instrumental techniques. Computer analysis of experimental data. Report writing. Lab fee required. Prerequisites: CM 118 and CM 162.

CM 201 Blochemistry 1
300:3
Survey of modern blochemistry with emphasis on currently active areas of research. Structure-function relatlonships in proteins and nucleic acids. Enzymes and their mechanisms of action; bioenergetic principles and energy production. Blochemicat theory and techniques. Prerequistites: CM 123, CM 125 and CM 161, or instructor's permission.

CM 202 Blochemisitry 11
303
Continuation of Biochemiatry I. Important principles of Intermediary metaboliem, energetics, membrane transport, replication of DNA and RNA, protein synthesis, hormonal regulation, cancer. Prerequisites: CM 201 and CM 162, or Instructor's permission.

CM 204 Biochemistry Laboratory

1/3:52
Laboratory experiments illustrating techniques for isolating and characterizing biological macromolecules, analyzing enzyme kinsitcs and elucidating metabolic pathways. Lab fee re quired. Prerequislte: CM 201.

CM 390-394 Bachelor's Thests in Chemistry

aach 2credits Original investigation by student under guidance of a departmental staff member. Caretul literature search required before inception of laboratory work, continued reference to chemical literature expected, and active participation in conference and seminars scheduled as work progresses. Student required to give oral resume of work before at least two members of chertistry facuity. Full-the students expected to register for 10 credite of thesis during sentor year. Peregistration beyond CM 394, each semeater: 2-credit charge for ovening studente; 4 -credit charge for day students. Research (lab) fee required. Prerequisltes: CM 501 and CM 504.

CM $501 \dagger$ Chemical Literature

10:51
Program of lectures, exercises and discussion destgned to famillarize students with the chemical ilterature. Studente may emphasize toplcs related to becheior's thesta. Prerequisties: CM 123, CM 125 and CM 162.

CM $502 \dagger$ Environmental Chemistry*

3303
Chemical reactions important in maintaining the ecosystem and in pollution. Genesis analysis and removal of politutants. Effects of chernical poilutants on health of industrial workers and the general population. Prerequisites: CM 122, CM 124 and CM 184 or CM 164 or instructor's permission.

CM 503 \dagger Organic Chemistry for Bloengineers
20:2
introductory course in organic chemistry for engineering students entering bioengineering program. Structure and reactions of organic compounds; organic motecules of biological significance. Prerequisites: CM 102 and CM 112 or equivalent.

CM 504 \dagger Chemical Laboratory Safety

1:0.1
A discussion of problems of health and safety arising in chemical laboratories. How to work safely with dangerous chemicals. This course must be completed by both graduale and undergraduate chemistry students before they undertake laboratory research.

GRADUATE COURSES

INORGANIC CHEMISTRY

CM 6014 Inorganic Chemistry

$33 / 40: 41 / 2$
Theories of bonding of inorganic compounds. Introduction to group theory as applied to molecular orbital and ligand fieid theory. Spectra of inorganic compounds. Nonaqueous solvents. Introduction to transition metal chemistry. Required of all candidates for Ph.D. degree in chemistry.

CM 814-319 Advanced Toplcs in Inorgante Chemistry*

atach 2 $1 / 20: 0: 3$ Selections from foilowing topics may be offered: physical and synthetic methods in inorganic chemistry, organometalilic chemistry, chemistry of solid state, chemistry of coordination compounds, mechanisms of inorganic reactions, chemistry of non-metals, inorganic polymers, chemistry of representative eiements, bonding theory. Prerequisite: CM 601 and adviser'e approval.

PHYSICAL CHEMISTRY

CM 7054 Chemical Physics
50:0:8
Fundamental ideas of quantum and statistical mechanics; application to elucldation of atomic structure and chernical bonding and to interpretation of spectra of atoms and molecules. Development of retationships of various bulk properties of matter to motecular structures and interactions. Required of all candidetes for Ph.D. degrees in chemistry. Prerequisites: CM 162 and PH 103.

CM 703 Chemical Thermodynamlos*

$31 / 40041 / 2$
Principies of equilibrium and nonequilibrium thermodynamics from both statistical and classical points of view. Application to chemical and physical problems, including solutions, chemical equilibria, electrochemistry, surface end trensport phenomena. Development of quantitative relationships between molecular scale behavior and buik thermodynamic properties. Prerequisite: CM 7as or permission of instructor.

CH 712 Research instrumentation*
21/2:5; 6
Laboratory course In electronics for students planning to use electronic instrumentation in research. Malmstadt/Enke Instrumentation Laboratory used. Power supplied, vacuum tube and solid state amplifiers, osciliators, servo systems, operational amplifiers, digltal instrumentation. Prerequisite: adviser's approval.
Also listed under CH 841, BE 622 and SA 805
CM 715 KInetles of Chemical Resctions* $\quad 21 / 200: 3$ Methods and results of investigation of rates and mechanfams of reaction in gases and in solution. Collislon and transition state theories of reaction rates. Prerequisite: CM 705 .

CM 716 Valence and Molecular Structure*
Descriptive exposition of appification of quanturn mechanics to problems of chemical bonding and molecular structure. Var-
ious quantum mechanical theoriee of valence, their applicability and limitations. Prerequisite: CM 705.

CM717 Electrochemistry*
 2112:033

Theory of equllibrium and mass transport properties of electrojyte solutions and fused saits. Chemical potential, diffusion, viscosity, electrical conductance. Theories of molecular relaxation processes in electrolyte solutions and techniques employed in their investigation (translent and forced oscillatory methods, NMR). Prerequislte: CM 162.

CM 721 Ounntum Mechanles for Chemlsts*

$33 / 4: 0,4^{1 / 2}$
Principles of quantum mechanics quantitatively developed. Comparison of various approaches. Most important approximation methods useful for application of theory to many problems in chemistry and physics. Detailed discussion of several applicatlons to some basic problems. Required of all Ph.D. cant didates with major in physical chemistry. Prerequisite: CM 705, PH 601 and PH 602.

CM 722 Statistical Mechanles for Chernists:

$31 / 4: 0: 41 / 2$
Classical and quantum statistical mechanics systematically developed and applied to calculation of thermodynamic properties of various states of matter from knowledge of structure of atoms end molecules and their forces of interaction. Required of all Ph.D. candidates with major in physical chemistry. Prerequisite: CM 721.

CM 730-731 Group Theory and Its

Applications I, Il°
eact $21 / x: 0.3$
Group theory and its applications to various problems in chemistry and physics. Abstract group theory; group representations; flnite and continuous groups. Applications to crystallography, valence theory, interpretation of atomic and molecular spectra, crystal fleld theory, energy band theory of solids, crystal symmetry and physical properties. CM 730 prerequisite: instructor's permission. CM 731 prerequisite: CM 730.

CM 750 Special Toplcs In Physical

Chemistry*
21/2:00:3
Advanced or specialized topics in physical chemistry presented at irregular intervals.

CM 780† Minicomputer Instrumentation

 for Seientific Research11/4:23
Fundamentals of digital electronics and minicomputers; com-puter-automated laboratory instrumentation; programming and interfacing required for data acquisition and control in scientific research; experiments with minicomputers and with laboratory apparatua interfaced directly to minicomputers. Lab fee required. Prerequisite: instructor's permission.
Also listed under PH 612 and BE 823

POLYMER CHEMISTRY

CM 771 Introductory Polymer Chemistry
21/2:0:3
Synthesis of polymers by step-reaction and addition polymerization, copolymerization, formation of three dimensional networks, block and graft polymers, polymer degradation, characterization of polymers in solution, rubber elasticity, polymer crystallization, spectroscopic techniques for polymer study, properties of commercial polymers. Prerequisites: CM 123, CM 125 and CM 162.

CM 772 Synthesis of High Polymers

21/2.0.3
Organic aspects. Chemistry of monomer and polymer formation. Modern mechanistic analysis of reactiona. Stereochemistry of polymer structure and forces of stereoregulation. Condensation, free radical (bulk, suspension, emulsion, soiution), ionic, ring-opening and nonclassical polymerization reactions.

CM 78i Solution Properter of

 High Polymers21/20:3
Application of osmometry, light scattering, equilibrium ultracentrifugation, electrophoresis, viscosity, diffusion, ultaacentrifuge sedimentation, flow birefringence, polarimetry, spectroscopy and other techniques to the characterization of dissolved macromolecules. Properties of polyelectrolytes, association in solutione containing macromolecules and reaction kinetics in macromolecular solutions also discussed. The course designed to cover both synthetic and biological macromolecules. Prerequisites: CM 161, CM 162 and CM 772 or CM 783.

CM 782 Macromolecules In the

 Sold State*21/2:0:3
Crystalline-amorphous systems, thermodynamics of crystal lization, defect structures, morphology of polymer crystals. Characterization of polymeric solids by x-fay and electron diffraction, potential energy calculations, electron microscopy, absorption spectroscopy and nuclear magnetic resonance. Electrical and optical properties of polymer solids. Prerequisite: CM 77 i.

CM 783 Laboratory Methods in Polymer Chemlatry
 0.5:3

 Experiments on free radical condensation, lonic and copolymerization, absorption, and NMR spectroscopy, intrinsic viscosity, Ilght scattering, gel permeation chromatography, x-ray diffraction, thermogravimetric analysie, differential scanning calorimetry, dilatometry, concentrated solution viscosity, and other aspects of polymer synthesis and characterization. Lab fee required. Prerequisite: CM 771.CM 785 Special Toplcs In Pofymer Chemistry* 2½:0:3 Presentation at intervals of various advanced or specialized topics in polymer chemistry.

ANALYTICAL CHEMISTRY

CM 801 Analytical Chemletry

$3^{3 / 4.00: 41 / 2}$
Principies of analytical chemistry, with emphasis on modern technlques. Chromatography, including GC and HPLC, spectroscopy (atomic absorption, luminescence circular dichroism, mass), electroanalytical chemistry, voltammetry, laser methods. Other instrumental applications are discussed in CM 119 and CM 905 . Required of all candidates for the Ph.D. degree in chemistry. Prerequisite: CM 162.

CM 850 Special Toples In Analytical Chemlstry* 21/2:0:3 Advanced or specialized topics in analytical chemistry. PH 671672 and PH 673-674 may be offered to satisfy minor requirernents in analytical chemistry.

ORGANIC CHEMISTRY

CM 503 \dagger Advanced Organic Chemiatry

$31 / 4: 0,41 / 2$
Advanced organic chemistry, with emphasis on structural and mechanistic concepts. Molecular reaclons, homolysls, heterolysis, displacement on hydrogen and on carbon, addition to unsaturated systerns, elimination reactions and electrocyclic reactions. Required of all candidates for Ph.D. degree in chemistry. Prerequisites: CM 123, CM 125 and CM 162.

CM 605 \dagger Spectroscopy of Organic Molecules

 21/2:0.3Application of spectroscopy to organic chemistry with emphasis on interpretation of vibrational, electronic, mass and magnetic resonance spectra of organic molecules. Prerequisites: CM 123 and CM 125, or equivalent.

CM 915 Topics In Physlcal Organtc Chemistry*

21/2:0:3
Quantitative aspects of structural, electrontc and medium effects in organic reactions; theoretical approaches to organic mechanisms; stereochemistry. Prerequisite: CM 903.

CM 920 Current Aspects of Organic Synthesis*

21/2:0:3
Approaches to synthesis of organic molecules. Stereoselective and stereospecifie reactions. Examples drawn from naturally occurring and theoreticalify interesting molecules. Prerequisite: CM 903.

CM 921.33 Advanced Topics in
 Organke Chemistry*

21/2:0:3
Selections from the following topics will be offered at irregular intervals: organometalic chemistry, photochemistry, heteroatorn chernistry and natural products. Prerequisite: CM 903 .

CM 940 Special Toples in Organic Chemistry*

21/2:0:0
Selected topics of current importance in organic chemistry. Prerequisite: CM 903.

BIOCHEMISTRY

CM 941-942 Blochemistry l,II
each $21 / 200: 3$ In-depth study of biochemistry. Properties of biological macromolecules: proteins and nucletc acids. Enzyme kinetics, mechanism and control. Energy production, transformation and utilization. Regusation of biochemical systems. Replication, transcription and transiation of DNA. Protein synthesis. Membrane structure and function. Prerequisites: LS 108, LS 116 and CM 202, or consent of instructor.

CM $943-948$ Advanced Toplcs in

 Blochemlstry*21/2.0.3
Seleotions from the foltowing topics offered at irregutar intarvals: protein and nucleic acid chemistry, intermediary metabolism and metabollc regulation. Prerequisite: CM 941 or consent of Instructor.

CM947 Blochemical Techniques
3/3:5:31/2
Laboratory procedures itlustrating new techniques for isolation and characterization of blological macromolecules. Enzyme kinetics. Biochemical appilcation of tracer technlques. Lab fee required. Prerequisites: CM 123, CM 125, CM 202, CM 162, LS 106, LS 116 and CM 941-942

CM 948 Epldemiology of Environmental Health 3:0:3 An introductory course on methodology, meaning and scope of epidemiology. Elements of biostatistics, study design, data collection. Emphasis on the scientific appratsal of the patterns of health and disease in environmental and occupational exposure to toxic chemicals.

INDUSTRIAL CHEMISTRY

CM 050-951 Industrial and Engineering

Chemistry i, II
each 3:0:3
Discussion of the chemical process industries, emphaaizing basic chemical and physical principles, as well as the economic feasibility of individual processes, to provide a chernical engineering background for chemists. Emphasis on stoichiometry, thermodynamic considerations, and unit operations such as absorption, extraction and distilation, as well as fluid dynamics and heat transfer. Natural resource analysis and recycling. Stagewise and continuous confact equipment and flow sheet analysis. Chemical plant design and chemical
economics. Individual reading and discussion of selected papers in chemical process technology. Prerequisite: B.S. degree in chemistry or allied field or permission of instructor.

CM 855 Project in Industrisi Chemistry as arranged

Directed study or supervised reading and/or experimental work in advanced area of chemistry and chemical technoiogy. Conferences scheduled. Candidates for this M.S. degree program are required to submit four unbound coples of a typewritten project report and present an oral summary to advisers before or on the seventh Wednesday prior to commencement. Prerequisite: B.S. in chemistry or allied field or permission of instructor.

GENERAL COURSES

C.W $871-872$ Gulded Studios In Chemistry as arranged

Directed study or supervised readings in advanced areas of chemistry, Registration by consent of department head.

CM 971-972 Chemical Coiloquilum
Meetings of the members of the department staff, inviled guests and quallfied students to study recent developments in chemistry. Required each year of all students in graduate degree status majoring in chernistry and for two years of doctorat matriculants in other departments with minor in any field of chernistry. Seminar fee required.

CM 973-978 Seminar In Chemiatry
each $1 / 1 / 2$ unlts
Chemical topics of current interest presented by participating students, staff, outside lecturers. Two semesters required of ail master's candidates and fout semesters of all doctoral candidates.

CM 995-998 Seminar in Chemleal Physics*

each $11 / 2$ unlts Topical subjects, problems, current research in chemical physics presented by participants, staff, outside lecturers. Required of all master's and doctoral candidates in chemical physics.

CM 888 Research in Chernistry 3 unlts

Original research, which may serve as the basis for the master's degree. Also to be taken by Ph.D. candidates prior to completion of the Ph.D. preliminary examination in chemistry. Minimum research registration requitements for the master's degree: 12 units. Registration for research required each semester consecutively until student has completed adequate research project and acceptable thesis and has passed required oral examination. Number of research credits registered for each semester shall reflect reallstically time to be devoted to research. A maximum of 6 units may be counted toward the Ph.D. in chemistry. Research charge. Prerequisites: for M.S. candidates, degree status and consent of graduate adviser and thesis director and CM 504 \dagger.

Cw 909 Research in Chembaty

3 untis
Original experimental or theoretical research (undertaken under guldance of a chemistry faculty member), whtch may serve as basts for degree of doctor of philosophy. Chemical physica major with thesis advisers in Department of Physics shoutd register for PH 791-798 and PH 981.993. Minimurn research registration requirements for the degree: for holders of M.S. based on research and thesis accoptable to depertment, 33 units; for other students, 45 units. Registration for research required each semester consecutively until student has completed adequate research project and accoptable thesis and has passed required oral examination. Number of research credits registered for each semester shall reflect reatistically
time to be devoted to research. Hesearch fee required. Prere quisites: completion of Ph.D. preliminary examination in chemfatry and consent of thesis director and CM $504 \uparrow$.

FACULTY

Ell M. Pearce, Professor of Polymer Chemistry and Head of Chemistry Department B.S., Brooklyn College; M.S., New York University; Ph.D., Polytechnic Institute of Brooklyn
Polymer synthesis and degradation
Ephraim Banks, Professor of Inorganic Chemistry B.S., CCNY; Ph.D., Polytechnic Institute of Brooklyn Chemistry and physics of crystals, solid state reactions and phase transitions

Judith S. Bellin, Professor of Biochemistry
B.S., Hunter College; M.S., Ph.D., Polytechnic Institute of Brooklyn
Environmental chemistry, environmental/occupational health
F. Marshall Beringer, Professor of Organic Chemistry B.S., Harvard University; M.S., Ph.D., Columbia University Organocopper compounds, organic derivatives of polyvalent iodine, reactive intermediates

Bemard J. Bulkin, Professor of Chemistry, Chairman of Chemical Physics Program and Dean of Arts and Sciences
B.S., Polytechnic Institute of Brooklyn; Ph.D., Purdue University
Infrared and Raman spectroscopy, cell membranes, hiquid crystals

Frederick Eirich, Distinguished Professor of Polymer Chemistry
Ph.D., University of Vienna
Mechanical behavior of polymers, sheology, colloid
chemisfry, chemical evolution, biopolymers
Emest M. Loebi, Protessor of Physical Chemistry M.S., Hebrew University; Ph.D., Columbia University Theoretical chemistry, quantum and statistical mechanics

Herman F. Mark, Professor Emeritus of Polymer Chemistry and Dean Emeritus B.S., Ph.D., University of Vienna Synthesis, characterization, and properties of natural and synthetic polymers

Herbert Horawetz, Institute Professor, Professor of Polymer Chemistry and Director of Polymer Research Institute
B.A.Sc., M.S.Sc., University of Toronto; Ph.D., Polytechnic Institute of Brooklyn Polymer reactions, hindered rotation in polymer systems, properties of polymer gels, polymer compatibility

Yoshiyuki Okamoto, Professor of Organic Chemistry B.S., Osaka University of Science and Engineering (Japan); Ph.D., Purdue University Organic and polymer chemistry

Ronald Parks, Professor of Physics and Chemistry B.S., Kansas State University; M.S., Ph.D., Stanford University
Surface physics and chemistry
Norman C. Peterson, Professor of Physical Chemistry S.B., Massachusetts institute of Technology; Ph.D., lowa State University
Molecular beam scattering, laser chemistry, reaction kinetics

Sergio Petrucci, Professor of Physical Chemistry
Ph.D., University of Rome
Relaxation kinetics, ligand substitution in nonaqueous media, microwave and diffusional rotational relaxation

Benjamin Post, Professor Emeritus of Physics and Chemistry
B.S., CCNY; M.S., Ph.D., Polytechnic Institute of Brooklyn
Crystal structure analysis, x-ray instrumentation and diffraction theory

Mark M. Green, Associate Professor of Organic Chemistry
B.S., CCNY; Ph.D., Princeton University

Dynamic stereochemistry, isotope effects, polymerorganic chemistry, mass spectrometry

Nancy Tooney, Associate Professor of Biochemistry B.S., M.S., SUNY (Albany); Ph.D., Brandeis University Structure and function of proteins and other biopolymers, the blood clotting system.

Martel Zoldin, Associate Professor of Inorganic Chemistry
B.S., Queens College; M.A., Brooklyn College; Ph.D., Pennsylvania State University
Chemistry of elements in Groups IIIA and IVA
Bruce A. Garetz, Assistant Professor of Physical Chemistry
A.B., Harvard College; Ph.D., Massachusetts Institute of Technology
Laser spectroscopy, nonlinear optics and multiphoton processes, molecular dynamics

Patrick Hoggard, Assistant Professor of Inorganic Chemistry
B.S., University of California (Berkeley); Ph.D., Washington State University
Spectroscopy of transition metal complexes
Sophia Merajver, Assistant Professor of Physical Chemistry
B.S., Ph.D., University of Maryland

Conformational studies of chain molecules, laser spectroscopy, theoretical studies

Subhash C. Narang, Assistant Professor of Organic Chemistry
B.Sc., M.Sc., Panjab University; D.Sc., Flinder University

New synthetic methods and reagents, reaction mechanisms

William T. Winter, Assistant Professor of Polymer Chemistry
B.S., Ph.D., SUNY (College of Environmental Science \& Forestry), Syracuse University
Polymer morphology and crystallography, polysaccharides and other biopolymers

Sybilla Kennedy, Academic Associate and Director of Laboratories (Farmingdale)
B.A., Smith College; M.A., SUNY (Stony Brook)

CIVIL AND ENVIRONMENTAL ENGINEERING

Civil engineering, the oldest branch of applied science, covers the entire range of environmental control. It includes the planning, design, construction and maintenance of such diverse elements as subterranean and subaqueous tunnels for vehicular traffic and fluid flow, bridges, buildings, dams, works for water and air puriffcation, structures and vehicles for space probes.

Today the ingenuity and imagination of civil and environmental engineers are engaged intensively in coping with the complexities of public heaith, sanitation, traffic flow in urbanized areas and city planning. Civil engineers pian and construct the superhighways, airports and other means of transportation required to satisfy the needs of our industrialized civilization. They atso harness, control and utitize our water resources for irrigation, power production and human consumption, all of which are basic to our very existence. The needs for civil and environmental engineers and the challenges they must face for many decades in the future dwarf any previous experience.

The Department of Civil and Environmental Engineering offers courses leading to the bachelor of science, master of science, engineer and doctor of philosophy degrees. The undergraduate program is accredited by the Accreditation Board of Engineering and Technology.

UNDERGRADUATE PROGRAM

The fundamental sciences of mathematics, physics and chemistry are presented first, together with additional subjects such as English, history, language and economics designed to broaden the student's intellectual horizons. The program then introduces the basic engineering sciences including properties of materials, tiuids, soils, electricity, thermodynamics and stress analysis. In the last phase of the program, professional applications such as highways, environmental engineering and detailed design of structures are studied. The emphasis is on preparing students broadly in all of the major areas of civil and environmental engineering.

ELECTIVES

in order to allow the students to broaden their knowledge, elective subjects are provided. Senior courses in
other departments may be selected as well as some courses in the graduate program. Approved technical electives are indicated below; other courses may be chosen with the approval of the department adviser.

No.
CE 272
CE 306
CE 307
CE 315
CE 335
CE 336
CE 345
CE 375
CE 521
tE 300
MA 153
MA 217
MA 223
MA 260
PH 230
PH 232
PH 240

Technical Electives
Construction Engineering
Credits
Introduction to Geophysical Sciences I Introduction to Geophysical Sciences II
Soils Engineering 3
3
Advanced Structural Design 3
Timber and Masonry Structures 3
Hydraulic Engineering 3
Hydraulic Design Laboratory 2
Oceanography 3
Engineering Economic Analysis 3
Elements of Linear Algebra 3
Complex Variables
3
Introduction to Probability 3
Vector Analysis and Partial Differential Equations 4
Introduction to Atomic and Nuclear Physics

2
Introduction to Modern Physics
3
$\begin{array}{ll}\text { Introduction to Modern Physics } \\ \text { Optics } & 3\end{array}$

ROTC students shouid note that freshmen and sophomores may substitute zero-credit military science courses for PE 101-104 (physical education); junior and seniors may substitute three of the following twocredit courses, MS 131, 142, 143, 146, for six credits of technical electives.

EVENING SESSION

Most civil engineering courses in the undergraduate listing will be offered only on an alternate-year basis. Exceptions to this plan are courses CE 202, CE 150, CE 214, CE 222, CE 391, CE 392, which will be offered each year.

Students enrolled in the evening session should contact the evening adviser or departmental oftice for details about this plan. A suggested eight year evening program leading to the B.S. in civil engineering degree is given on the following page.

Typical Course of Study for the Bachelor of Science Degree in Civil Engineering

Freshman Year

First Semester		Hours/Week			Second Sernester		Hours/Week		
No.	Subject	Cl.	Lab.	Cr .	No.	Subject	Cl .	Lab.	Cr .
MA 101	Calculus I	4	0	4	MA 102	Calculus 1 \%	4	0	4
CM 101	General Chemistry I	$21 / 2$	0	$21 / 2$	CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab I	0	$11 / 2$	1/2	CM 112	General Chemistry Lab. II	0	$11 / 2$	1/2
PH 101	Introductory Physics !	3	0	3	PH 102	Introductory Physics II	$31 / 2$	$11 / 2$	4
HU 101	College Comp.	3	0	3	SS 104	Cont. World History	3	0	3
AM 101	Graphics	1	3	2	CS 100	Intro. to Programming	2	0	2
PE 101	Physical Education	0	2	0	PE 102	Physical Education	0	2	0
				15					16
					Summer camp (2-week session)				
					CE 150	Surveying Fieldwork			2
Sophomore Year									
MA 103	Caiculus Ili	3	0	3	MA 104	Applied Ord. Diff. Eqs.	3	0	3
PH 103	Introductory Physics III	21/2	$11 / 2$	3	AM 117	Eng. Mech. Il	2	0	2
AM 116	Eng. Mech. 1	2	0	2	CE 202	Mechanics of Materials	3	0	3
CE 151	Surveying	3	3	4	CE 303	Nat. \& Prop. Struct. Mat.	1	3	2
HU 200	Intro. to Literature	3	0	3	EE 370	Principles of E.E.	3	0	3
PE 103	Physical Education	0	2	0		Hum./Soc. Sci. elective	3	0	3
				15	PE 104	Physical Education	0	2	0
									16

Junior Year

CE 222	Fluid Mechanics	3	3	4	CE 214**	Computer Techniques in Eng.	3	0	3
CE 322	Theory of Struct. 1	3	0	3	CE 232	Soil Mechanics	2	3	3
CE 351*	Highway \& Transp. Eng.	2	3	3	CE 323	Theory of Struct. II	3	0	3
AM 201	Thermodynamics	3	0	3	CE 331	Steel Structures	3	0	3
	Mathematics elective	3	0	3	CE 340	Water Res. \& Hydr. Eng.	3	0	3
	Hum./Soc. Sci. elective	3	0	3		Hum./Soc. Sci. elective	3	0	3
				19					18

Senior Year

CE 252	Aeinforced Concrete Struct.	3	0	3	CE 305	Eng. Contr. \& Specs.	2	0	2
CE 317	Foundations	2	3	3	CE 332	Design of Struct. Sys.	2	3	3
CE 341	Environ. Eng. I	2	3	3	CE 342	Environ. Eng. II	2	3	3
	Hum/Soc. Sci. elective	3	0	3		Hum./Soc. Sci. elective	3	0	3
	Technical electives			6		Technical electives			6
				18					17

Minimum total credits required for graduation: 136

[^5]Suggested Eight-Year Program Loading to the Bachelor of Sclence Degrea in Civil Enginearing

First Year

First	Semester
No.	Subject
MA 101	Calculus I
HU 101	College Composition

Second Year				
MA 103	Caiculus In!	3	0	3
PH 102	Introductory Ptysics II	$33^{1 / 2}$	$11 / 2$	4
HU 200	intro. to Literature	3	0	3
				10

Second		Semester		
No.	Subject	Hours/Week		
MA 102	Caiculus II	Cl.	Lab.	Cr.
PH 101	introductory Ptysics I	4	0	4
SS 104	Contemp. World History	3	0	3
		3	0	3

MA 103 Caiculus n! PH 102 Introductory Physics II
 HU 200 intro. to Literature

	Hours/Week	
Cl.	Lab.	Cr.
4	0	4
3	0	$\frac{3}{7}$

MA 104	Appl. Ord. Diff. Equations	3	0	3
PH 103	Introductory Physics II	$21 / 2$	$11 / 2$	3
AM 101	Graphics (1981-1982,			
CS 100	1983-1984) or Intro to Programming (1982-1983, 1984-1985)	2	3	
		2	0	$\frac{2}{8}$

Third Year

AM 116	Eng. Mechanics I	2	0	2
CM 101	General Chemistry 1	$2^{1 / 2}$	0	$2^{1 / 2}$
CM 111	General Chemistry Lab. I	0	$11 / 2$	$3^{1 / 2}$
	Mathernatics elective	3	0	$\frac{3}{8}$

AM 117	Eng. Mechanics II	2	0	2
CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$
CM 112	General Chemistry Lab. II	0	$11 / 2$	$1 / 2$
AM 101	Graphics (1981-1982,		3	
CS 100	$1983-1984$) or Intro. to Programming (1982-1983, $1984-1985)$	2	0	$\frac{2}{7}$
				7
CE 150^{*}	Surveying Fieldwork			2

Fourth Year

CE 202	Mech. of Materiais Thermodynamics	3	0 0	3	CE 214	Computer Tech. in Eng. Fluid Mechanics	3	3	3 4
	Humi/Soc. Sci. elective	3	0	3					7
				9					
Fifth Yeart									
CE 340	Water Res./Hyd. Eng.	3	0	3	CE 15\%	Surveying	3	3	4
EE 370	Principles of E.E.	3	0	3		Hum.Soc. Sci. elective	3	0	3
CE 303	Nature \& Prop. of Struct. Materials	\dagger	3	2					7
				8					
Sixth Year**									
CE 322	Theory of Struct. 1	3	0	3	CE 323	Theory of Struct. It	3	0	3
CE 232	Soil Mechanics	2	3	3	CE 331	Steel Structures	3	0	3
	Hurn./Soc. Sci. elective	3	0	3		Hum./Soc. Sci. elective	3	0	3
				9					9
Seventh Yeart									
CE 252	Reinforced Concrete	3	0	3	CE 332	Design of Struct. Syst.	2	3	3
CE 351	Hwy. \& Transp. Eng.	2	3	3	CE 317	Foundations	2	3	3
	Technical elective			3		Technical elective			3
				9					9
Eighth Year**									
$\begin{aligned} & \text { CE } 341 \\ & \text { CE } 305 \end{aligned}$	Environ, Eng. 1	2	3	3	CE 342	Environ. Eng. It	2	3	3
	Eng. Contr. \& Specs.	2		2		Hum./Soc. Sci. elective	3	0	3
	Technical elective			3		Technical elective			3
				8					9

Minimum total credits required for graduation: 136

- This 2-week course will be oftered every May during the day. Normal credit completion by end of third year $=52$ credits \dagger Offered in alternate odd years, i.e. 1981-1982, 1983-1984.
(The fifh and sixth years are interchangeable.)
- Otfered in alternate even years, i.e., 1982-1983, 1984-1985 (The seventh and eighth years are interchangeable.)

GRADUATE STUDY

Programs of study are offered leading to the degrees of master of science in civil engineering, master of engineering in civil engineering, master of science in environmental health science, engineer in civil engineering, doctor of philosophy in civil engineering and the undesignated doctor of philosophy.

The requirements for the master's degree include prescribed courses and approved elective courses. A thesis or a project may be substituted for elective courses. A minimum of 36 units is required for the degree.

The engineer degree is oriented toward civil engineers who wish to study advanced engineering techniques beyond the master's degree. A minimum of 24 units of approved graduate courses and a minimum of 12 units of design project are required.

The Ph.D. degree requires advanced study beyond the master's degree level in the field of civil engineering. Evidence of reading knowledge of modern language other than English is required. A thesis characterized by originality must be written and defended.

REQUIREMENTS FOR THE MASTER'S DEGREE

A bachelor's degree in civil engineering is requited for students pursuing a master's degree in civil engineering. Those seeking the master's degree in environmental health science are required to hold a bachelor's degree in science. Applicants with degrees in other fields may be admitted with undergraduate deficiencies as evaluated by the departmental graduate adviser. Typical programs are illustrated subsequently.

Courses in some areas of specialization are not offered on a regular basis. The student should consult with the department head to determine the expected scheduling of such courses.

AREAS OF SPECIALIZATION

Structural Engineering Program

No. Required Subjects Units
CE $60 t$
Theory of Structural Analysis and Design 1
CE 602 Theory of Structural Analysis and Design II

3
Minimum of nine units from the
courses listed immediately
below:
CE 609 Matrix Methods of Structural
CE 611 Limit Design of Metal and Concrete Structures I
CE 614
CE 641 Metal Structures I

Required units	15
Minimum elective units	21
Minimum total units	36

Water Resources and

 Hydraulic Engineering ProgramCE 715 Open Channe! Hydraulics 3
CE 716 Hydraulic Problems 3
CE 722 Hydrologyl 3
CE 724 and either CE 723

CE 732
Water Resources Planning 3

$\left.\begin{array}{l}\text { Hydrology II } \\ \text { or } \\ \text { Coastal Engineering }\end{array}\right\}$	3
Required Units Minimum elective units Minimum total units	15

Environmental Engineering and Planning Program

a. Water Quality Engineering

No. Required Subjects Units
CE 738 Sanitary Chemistry 3
CE 740 Sanitary Microbiology 3
CE 742 Water and Wastewater Treatment $1 \quad 3$
CE 743 Water and Wastewater Treatment II 3
CE $747 \quad$ Analysis of Stream and Estuary
Pollution
3
Required units $\quad 15$
$\begin{array}{ll}\text { Minimumelective units } \\ \text { Minimum total units } & -\frac{21}{36}\end{array}$
b. Air Resources Engineering

CE $753 \quad \begin{aligned} & \text { Dispersion of Pollutants in the } \\ & \text { Atmosphere }\end{aligned}$
CE 755 Air Pollution Chernistry 3
CE 756 Air Pollution Analysis 3
CE 757 Air Pollution Effects 3
CE 758 Air Pollution Engineering Control $\quad 3$
Required units 15
Minimum eiective units $\quad 21$
Minimum total units $\quad 36$
c. Environmental Health Science

CE 738	Sanitary Chemisiry	3
CE 740	Sanitary Microbiology	3
CE 741	Analysis of Water Quality Systems	3
CE 751	Environmental Health Engineering	3
CE 752	Air Pollution	3
CE 770	Solid Waste Management	3
	Required units	38
	Minimum elective units	18
	Minimum total units	36

d. Environmental Planning

CE 751 Environmental Health Engineering
CE $759 \quad$ Engineering Aspects of Regional and Master Planning
CE $760 \quad$ Planning and Engineering of Urban
Environmental Systems 1
CE $761 \quad$ Planning and Engineering of Urban
Environmental Systems 11

CE 762	Urban Environmental Systems Workshop	3
	Requiredunits	15
	Minimumelective units	21
	Minimum total units	36
Ocaan Engineering Program		
CE 717	Hydrodynamics for Civil Engineers	3
CE 732	Coastal Engineering	3
CE 733	Forces on Marine Structures	3
CE 734	Design of Marine Structures	3
MA 551	Applied Statistics 1	3
	Required units	15
	Minimum elective units	21
	Minimum total units	36
Highway Engineering Program		
CE 801	Flexible Pavements-Design and Evaluation	3
CE 802	Rigid Pavements-Design and Evaluation	3
CE 805 CE 821 and either CE 759	TrafficStudies	
	Design of Traffic Facilities	
	Engineering Aspects of Regiona and Master Planning or	6
CE 812	Transportation Economics	
	Required units	15
	Minimum elective units	21
	Minimum total units	36
Geotechnical Engineering Program		
CE 881	Special Topics in Soil Mechanics and Foundation Engineering I	
CE 882	Special Topics in Soil Mechanics and Foundation Engineering II	
CE 861	Soit Mechanics [3
CE 862	Soil Mechanics 11	3
CE 863	Experimental Soil Mechanics	3
	Required units	12
	Minimum elective units	24
	Minimum total units	36

REQUIREMENTS FOR THE ENGINEER DEGREE

A master's degree in civil engineering meeting the specialization area requirements for the Polytechnic master's degree is generally required for admission. Applicants with master's degrees in other engineering disciplines may be admitted with deficiencies as evaluated by the departmental adviser. A minimum of 36 units of work beyond the master's degree is required, of which at least 27 units must be completed at Polytechnic. This work must include a 12 -unit design project. The engineer degree may be earned in any area of specialization except environmental health science. The program for this degree follows:

No.	Required Subjects	Units
CE 998	Project for the Degree of Engineer	12
	Applied Mathematics or Operations	
	Research and Systems Analysis	3
	Nine units of courses in area of	
	specialization selected with the	
	consent of the adviser	9
	Required units	24
	Minimum elective units	12
	Minimum total units	36

REQUIREMENTS FOR THE DOCTOR'S DEGREE

Students pursuing the doctorate in civil engineering must hold a master's degree in civil engineering. For the doctorate in environmental health science, a master's degree in science is a prerequisite. Applicants with degrees in other fieids may be admitted with deficiencies as evaluated by the departmental graduate adviser.

Each candidate for the doctorate must complete a minimum of 66 units of academic work beyond the master's degree, of which at least 57 units must be completed at Polytechnic. In any case the candidate must complete not less than 90 units of work past the bachelor's degree. Of the units taken at Polytechnic, at least 27 must be formal course work (not including guided readings, seminar or project.) Registration for a minimum of 30 units of dissertation research is required at the rate of a minimum of six units per term, continuously, until the dissertation has been compieted and accepted.

All candidates must demonstrate a reading knowledge of one modern language other than English, as approved by the department head. Students interested in the Ph.D. program are advised to refer to the Civil Engineering Graduate Study Guide, available from the department head, for information on qualifying examinations and other regulations.

UNDERGRADUATE COURSES

CE 150 Surveying Fieldwork

2 credits
Field exercises involving the rudiments of elementary surveying, route surveying and geodetic surveying given at summer camp (two weeks). Prerequisite: MA 101.

CE 151 Surveying

3:3:4
Modern methods and computations for engineering surveys. Fundamental theory of photogrammetry with laboratory exercises. Prerequisites: CE 150 and AM 101.

CE 202 Mechanles of Materials

3.0 .3

Basic principles of stresses and strains of members subjected to direct force, torsion and bending. Deflections of bears. Staticaliy determinate and indeterminate problems. Column stability. Prerequisite: AM 115 ot AM 116.
Also listed under AM 121

CE214 Computer Tectiniques in Engineering
3:0:3
Course devoted to use of higher-tevel computer languages and techniques in engineering. Use of digital computer for numerical methods invoiving differentiation, integration and solution of systerns of equations. Problem-oriented languages in engineering design practice. Computer graphics in engineering. Prerequisites: CS 100 and MA 104.

CE232 Fluld Mechanics

3:3:4
Fluid-flow concepts including continuity, energy and momentum equations, faminar and furbulent flow, boundary layer drag, dimensional analysis. Euter's equations and two-dimensional ideal fluid flow. Hydrostatics. Pipe flow, pumps, turbines, fluid measufements. Prerequisites: AM 115 or $A M 116$ and $A M 117$.

CE 232 Soll Mechanics
23:3
Geological soil-forming processes and physical and mechanical properties of solis. Plasticity, capillarity, permeability, stress distribution in soil masses, consolidation theory, settlement of structures. Laboratory studies of physical and mechanical properties of soils. Prerequisites: CE 222 and CE 202.

CE 252 Reinforced Concrete Structures
3:0:3
Fundamentals of analysis and design of reinforced concrete beams, columns, slabs. Prerequisite: CE 323.

CE 272 Construction Engineering

Construction methods and management. Planning of construction operations, including cost estimating, bid preparation, time scheduling and economic evaluation of alternatives. Project planning and resource allocation uthizing the critical path method and PEPT. Prerequisite: senior status.

CE 303 Nature and Propertles of Structural Materlals

Structure of solid materials related to interatomic bonding and states of aggregation. Amorphous, crystalline, polymeric and composite materials. Physicat and mechanical properties of concrete, metals, plastics and asphaltic materials. Experimental investigation of mechanical properties of select structural materiais and physical properties of cement and concrete mixes. Prerequisites: CM 101, CM 111 and CE 202
Adso listed under MT 303

CE 305 Engineering Contracts and Specifications

Detailed analysis of engineer's part in preparation of engineering contracts and specifications. Prerequisite: CE 202.

CE 306 Introduction to Geophysleal Sclences !

3:0:3
The earth as a planet. Time. Tides. Map projections. Planet earth in the sun's rays. The earth as a magnet. The moon and man-made satelifites. The atmosphere and oceans. The earth's figure and gravity.

CE 307 Introduction to Geophysleal Selemees If

Atmospheric and oceanic circulation. Ocean waves and sea ice. Air masses, fronts and storms. The earth's interior. The crust of the continents and ocean basins. Origin and early history of the earth. Weathering and soils. Water at the surface and in the subsurface zone. Work of moving water. Fioods. Shoreline processes. Glacial processes. The Pleistocene Epoch and man.

CE 315 Soll Englnearing $3.0: 3$
Seepage, flow net studies and pore pressures. Fitter criterta and applications. Capillarity, sorption and frost probiens; permafrost. Shear strength theory and taboratory measurements.

Stability of slopes and landslides. Additional topics in consolidation and settlement. Lateral earth pressures, Loads on underground conduits. Laboratory demonstrations.
Pretequisite: CE 232, CE 317.
CE317 Foundations
2:3:3
Site exploration and soil sampling; planning boring programs and interpretation of boring logs. Bearing capacity of footings and mats for granular soils and ciays. Settlements of structures. Lateral earth pressures and proportions of retaining walls. Pile foundations. Prerequisites: CE 232 and CE 252.

CE 322 Theory of Structures I 3:0:3
Analysis of statically determinate structures including beams, frames, arches, trusses, three-dimensional structures. infiuence lines and the effects of moving loads. Deflections of structures. Prerequisite: CE 202.

CE 323 Theory of Structures II
30:0:3
Analysis of statically indeterminate structures including continuous beams, trusses, ripid trames, arches. Classical, numerical and matrix methods of analysis. Effects of temperature and movement of supports. Influence :lnes and relation of design to analysis. Prerequisite: CE 322.

CE 331 Steel Structures
30:3
Design of steel beams and girders, tension members, columns. Botted, fiveted and welded connections. Prerequisite: CE 323.

CE 332 Design of Siructural Systems
2:3:3
Structural design of buildings, frames and bridges in steel and reinforced concrete. Selection of framing systems and design of multistory structures. Composite and prestressed construction. Prerequisites: CE 252, CE 323, CE 331.

CE 335 Advaneed Structural Design

3:0:3
Elastic and inelastic design of structural steel members and frames. Yield-line theory of reinforced concrete slabs. Principles and techniques of prestressed concrete construction. Stability, stress intensification and secondary stresses in structural components. Prerequisites: CE 323, CE 331 and CE 252.

CE 338 Timber and Masonry Structures

30:3
Properties and classification of structural lumber. Design of timber connectors. Design and erection of residential and industrial timber buildings. Beams, frames, columns and trusses of sawn lumber and glued-laminated construction. Manufacture and properties of concrete masonry units. Properties of mortar and grout. Design and construction of load-bearing reinforced and unreinforced masonry structural elements. Prerequisite: CE 323.

CE 340 Water Resourtes and

Hydraullc Engineering
3:0:3
Rydrologic techniques. Surface water and ground water supplies. Open channel flow. Water transmission and distribution. Wastewater and storm water drainage. Dam and reservoir profects. Development of water resources for multiple purposes. Prerequisite: CE 222.

CE 341 Environmental Engineering I
2:3:3
Water and wastewater quantities. Water quality. Water and wastewater treatment. Laboratory analyses of water and wastewater samples, treatment process tests, measurements of air and solid wastes. Prerequisites: CE 222 and CE 340.

CE342 Environmentai Enginearing II
23:3
Integrated lecture and design periods covering water distribution systems, water filtration units and principal components of wastewater treatment plant for a small community. introductlon to air quality and solid waste problems. Prerequisite: CE 341.

CE 345 Hydraullc Engineering
3:0.3
Pumping systems, hydroelectric developments, nonuniform How in open channels. Overflow, siphon and shaft spillways. Flow meters for open and closed conduits. Prerequisite: CE 222.

CE 351 Highway and Transportation Engineering

23:3
Fundamentals of highway and transportation engineering including land, urban, air and water transportation. Geometric design, capacity intersection design, drainage, economic analysis and finance, rigid and flexible pavernents, velocity profile and performance, evaluation, future developments. Prerequisite: CE 151.

CE 375 Hydraulic Design Laboratory

0:6:2
Comprehensive investigation into areas of hydraulic design for which rational solutions are not readily available or for which present design criteria are inadequate. Course culminates in detailed study of area chosen by student from topics that may include, among others, open channel manifolds, drop inlets, energy dissipators. Prerequisite: CE 222.

CE 391-392 Bachelor's Thesis in Civll Engineering

each 2 credits
Original research, design or plan for approved engineering project. Thesis gives student opportunity to apply knowledge and training gained in course of study by approaching and successfully solving a comprehensive problem. Conferences held regularly with appointed members of staff. Thesis registration required each semester. Students must reregister for thesis until completed. Prerequisite: senior status.

CE 396 Civil Engineering Internship
200-2
A supervised, creative civil engineering experience of at least two months' performance judged on the basis of written and oral reports presented to the industrial and faculty supervisors. Regular faculty visitations and conferences arranged during the internship. Open to students who have completed the junior year and have departmental approval prior to beginning the internship experience. Prerequisite: depariment's permission.

CE 398 Prodect in Clvil Engineering 2 or 3 credits

 as amangedSolution to civil engineering problem or detalled study of ad. vanced area of civil engineering under close supervision of adviser. Prior to undertaking the project, interested students must submit to course director detailed written proposals of the problem they intend to investigate, along with number of credits for which they decide to register. Results of project must be submitted to course director in acceptable written form. Prerequisite: course director's permission.

CE521 Oceanography
3:0:3
Plate tectonics. Ocean sediments. Composition and physica! properties of sea water. Equations of motion. Effects of friction. Wave properties and theory. The tide. Survey of marine biology. Open for graduate credit. Prerequisites: MA 104 and PH 103.

GRADUATE COURSES

STRUCTURAL ENGINEERING

Prerequisites for afl courses: MA 104, CE 323.

CE 601 Theory of Structural Analysis and Design I

21/2.0.3
Theories of structural action, including elastic and plastic behavior and their relationship to design. Classical structural mechanics, matrix procedures and numerical methods of analysis as well as their interrelationships. Influence lines, elastic supports, setilement and rotation of supports. Applications to statically indeterminate frames and trusses. Prerequisites: CE 252 and CE 331 .

CE 602 Theory of Structural Analysis and Design II

21/20:03
Analysis of arches, rings and continuous arches on slender piers. Frames and continuous curved members subjected to lateral and out-of-plane loading. Space frameworks, secondary and participation stresses, buckling of frames, trusses, arches. Prerequisite: CE 601.

CE 603-604 Special Topics in Structural

Analysis I, II
21/2:0:3
Specialized current topics of interest offered at irregular intervals by advance announcement. Graduate adviser may approve repeated registration for different topics. Prerequisite: CE 601.

CE 605 Plate and Shell Structures * 21/2:0:3
Analysis of plate and shell structures with particular emphasis on civil engineering applications of shells. Analysis of plates by finite differences. Membrane solution of shells of revolution, cylinders, elliptic and hyperbolic paraboloids. Asymptotic solution for symmetrically loaded shelis of revolution. Folded plates.

CE 609 Matrix Methods of Structurel

Analysis I

21/2:0:3
Basic concepts of matrix methods in structurat analysis. Flexibility and stiffness matrix of structuralelements. Force and displacement transformations. Flexibility and stiffness of complete structure. Complete solution of structural problems by chain matrix operations. Prerequisite: CE 601.

CE 610 Matrix Methods of Structural
Analysis II
21/20:3
Extension of matrix methods to grid frames, curved members, space structures, nonlinear anatysis and optimization of structures. Prerequisite: CE 609.

CE 611 Limit Design of Metal and Concrete Structures ${ }^{*}$

21/2:0:3
Application of plastic theory of structural bahavior to design of civil engineering structures. Particular emphasis on steel and reinforced concrete beams and frames. Prerequisite: CE 601.

CE 612 Limit Design of Metal and

 Concrete Structures II*21/2.0.3
Application of plastic theory to multistory steel frames. Creep effect on concrete structures. Inelastic behavior of members with open cross sections. Yield line theory of reinforced concrete slabs. Prerequisite: CE 611.

CE 613 Stability of Structures*
21/2:0:3
Critical loads of elastic members and frameworks from charac-teristic-value problem formulations, considering laterial and torsional displacements. Stability of inelastic members, including initially strained steel shapes. Solutions by numerical methods. Behavior of members and frames with initial geometrical imperfections and transverse loading. Ultimate load of plate girders. Prerequisite: CE 602.

CE 614 Metal Structures ${ }^{*}$
21/2.0.3
Current developments in design of metal structures, including design of light-gauge, cold formed members, orthotropic bridge decks and structural applications of aluminum. Prerequisite: CE 601.

CE 615 Metal Structures II* 21/2:0.3

Techniques for designing cable-suspended and cable-stayed structures, latticed shells, space frameworks and other complex structures. Application of nonlinear analysis utifizing electronic digital computers. Prerequisite: CE 614.

CE 616 Finte Element Analysis of Structural Systems*

21/2:0:3
Relationship between the finite element method and the Rayleigh-Ritz method. Derivation of element stiffness matrices. Construction of general stiffness matrices in global coordinates. Problems in plane stress, plates and shells under static and dynamic loads. Prerequisites: CE 604 and CE 610.
Also listed under AM 621
CE621 Advanced Mechanics of Materials: $21 / 2.003$ Unsymmetrical bending of elastic bars, shear center for members of thin-walled open cross section, curved beams, beams on elastic foundations, membrane and bending stresses in shells.

Also listed under AM 611

CE 623 Experimental Mechanics *
1:21/2:3
Application of experimental stress analysis techniques to aerospace, civil and mechanical engineering structures. Mechanical strain gauges, Begg's deformeters, the use of electricat strain gauges and associated instrumentation, brittle coating, photoelasticity and photostress, moire fringes. Stetic and dynamic loading; creep and fatigue of structural elements.
Also listed under AM 825
CE624 Numerical Methods in Civil Engineering 21/2.0:3 Formulation of numerical techniques for solution of varlous problems in civil engineering. Topics include finite difference, numerical integration and relaxation methods. Critical path method in construction management. Elements of linear programming.

CE625 Struetural Dynamies*

21/2:0:3
Oynamic response of single degree of freedom systems. Theory of vibration of finite degree of treedom systems. Influence coefficient method. Analytical and numerical solution of dynamic response problerns. Nonlinear analysis of single degree of freedom system. Emphasis on computer analysis of large complex systems. Prerequisite: CE 609.

Also listed under AM 681

CE 527 Dynamic Response of Civil Engineering Structures* 21/2:0:3 Description of dynamic loading on civil engineering systems. Effect of wind on bridges, suspenston systems and tali buildings using random vibration theory. Earthquake analysis of structures responding inelastically. Application to problems in material behavior such as fatigue in cables, hysterisis loops in concrete and steel and damping in structural systems. Prerequisite: CE 625.

CE632 introduction to Piping Analysis

$21 / 200: 3$
Use of displacement energy, complementary energy and thermoelastic reciprocal theorem in solution of problems of plane bending of rings, frames and piping; three-dimensional analysis of piping systems; computational methods of analysis using concepts of elastic center; bending of bimetals and layered elernents. Prerequisites: AM $601-602$ or equivalent. Also Ilsted under AM 632

CE 641 Reinforced Concrete Structures I

$21 / 2.003$
Elastic and ultimate strength design of reinforced concrete members. Shear and torsion effects on beams. Analysis and design of prestressed concrete structures. Prerequisites: CE 252 and CE 601 .

CE 842 Reinforeed Concrete Structures II
21/2:0:3
Blaxial bending of columns. Stability of feinforced concrete columns. Designs of two-way and flat stabs, arches and horizontally curved members. Shear wall design and design problems of tall structures. Prerequisitee: CE 641 and CE 602.

WATER RESOURCES AND
 HYDRAULIC ENGINEERING
 Prerequisite for all courses: MA 104, CE 222, except as Indicated.

CE711 Hydraulk Design of Sinuctures

21/2:0:3
Hydraulic principles utitized in design of structures such as spilways, measuring fiumes, energy dissipators, channels of linear and nonlinear alignment, gradual and sudden transition in subcritical and supercrittcal flow, culverts, fateral spillway channels. Prerequisite: CE 715.

CE 745 Open Channol Hydraullcs
21/2023
Theory and computations for uniform flow, gradually varied flow, rapidly varied flow, unsteady flow in prismatic and nonprismatic channels.

CE716 Hydraulic Probiems* 21/20:3

Similarity, dimensional analysis and modeling techniques as applied to hydrautic systems. Pumping systems including hydraulic transients and flow of ait, tiquids, sludge. Sediment trensport. Cavitation. Prerequisite: CE 715.
CE 717 Hydrodynamics for Clill Engineers* 21/2:0:3 Applicatlon of basic concepts of flutd kinetics and dynamics to problems in turbulent diffusion, density current, stratified flows and other problerns of special interest to civil engineers.

CE 722 Hydrologyl

21/200:3
Hydrologic cycle. Meteorological conslderations. Analyses of precipitation, runoff, unit hydrograph, flood routing and reservoir storage. Principles of groundwater hydrology. Introduction to frequency analyses of floods and droughts. Prerequisite: undergraduate degree in engineering or science.

CE723 Hydrology il 21/20:3
Studies of duration curves, reservipir operation, urban drainage, temperature and snowmelt, erosion, sedirnentation. Statisticel methods in hydrology, including analysis of floods and droughts and other hydrologic events; steamfiow simulation.

CE724 Water Resouress Planning

21/:0:3
Water resources investigations, comparison of elternatives, screening and formulation of projects, economic enelysis of single and multipurpose profects. Financial management, legal and other considerations. Applications of system analysis. Prerequisite: undergraduate degree in engineering or science.

CE 725 Water Resourees Mathematical Modelling*

21/2:0:3
The study of hydraulic, hydrologic, water quality and systems models as applied to rivers and streams, embayments, estuaries and basins. Review of basic equations of flow applicabie to these models. Appropriate modeling techniques using computer-based solutions reviewed with emphasis on timevarying boundary conditons and problems of calibration and verification. One, two and threedimensional models considered. Stormwater models and water resource systems modeling also covered. Prerequisites: coutse in computer programming and CE 715.

CE 732 Coastal Engineering*

21/20:3
Basic concepts of wind-wave induced phenomena in near shore areas as assoclated with problems of ehorellne protection. Water-wave dynamics as applied to coastal structures, including effects of hurricanes on maximum storm tides, wave heights, pressures.

CE 733 Forces on Marine Structures*
21/20:03
Analysis of forces on marine structures such as piers, platforms, jetties, subjected to hydrodynamlc and other loads. Waves as random processes. Application of wave forecasting
and spectra. Description of interaction between wave forces and structural response.

CET34 Design of Marine Structures*
21/2:0:3
Pianning of port facillites and coastal protection. Problems involved in design of marine structures. Cholce of design parameters as affected by hydrodynamic and other loads.

CE 735-738 Special Toples In Water Resources and Hytraulce Englaceing $\mathrm{I}^{*}, \mathrm{II}^{*}$
 21/20:3

Topics of special interest in water resources and hydrautic engineering. Such toplcs may include hydroeconomic modela; finite difference and tinite element modele; synthetic hydrology; conjuctive use of surface water, groundwater, desalinized and recycled water; thermohydrologic and hydrometeorological problems; flushing of estuazies; hydrodynamics of oll poltution, sludge dumping, and eedlment movernents; environmental design of hydraulic structures: problems of macro projects. Prerequisite: permission of instructor.

ENVRONMENTAL ENGINEERING

CE730 SanHary Chomiatry

$1: 23$ Lectures and laboratory work. Review and application of principles of chemistry to waters and wastewaters. Laboratory anslyses of representative waters and wastewaters for most commonly determined parametere as related to applications in water environment. Evaluatlon of methods and procedures used.

CE 739 Chemestry for Sanitary Engineers* $\quad 21 / 200: 3$
The study of physical chemistry, organic chemistry, blocherrtstry involved in water and wastewater treatment. Course provides advanced study of principles Hlustrated in CE 738. Prerequiste: CE 738.

CE 740 Sanitary Mileroblology

21:3
Lectures and laboratory work. Microbiology of westewater trestment processes, wastewaters, recelving waters. Includes microorgenisme and ecological relationships. Laboratory inciudes identification and microbiological examination of waters and wastewaters.

CE 741 Analysis of Water Ouislity Syatems*
Fundamental study of chemistry, blochemitrtry, microblology and appilcation of these princlples to water and wastewater treatment. Study of natural water-courses in relation to natural and man-made pollution. Fechniques of evaluating self-pur|flceston capacity of streams, lakes, estuarles.

CE 742 Water and Wastewater TrentmentI

212:0:3
Study of physical, chemical and blotogicat principies involved in process design and treatment of water and wastewater. Toplcs include aeration, filitratlon, softening, chemical treatment, coagulation, fiocculation, desalinization, taste and odor control. Prerequisite: CE 738.

CE 743 Water and Wastewater Treatment II $\quad 21 / 200: 3$ Continuation of CE 742. Topics include sedimentation, adsorption, aeroblc and anaerobic biological treatment, sfudge treatment and disposal. Prerequisite: CE 740.

CE 744 Unit Operations in Water and Wastewater Thentment*

$2 y_{2}, 0,3$
Advanced study of various biological, physical and chemical principles involved in water and wastewater treatment. A rational approach and theoretical development of design reletionshipe commonly used in the design of unit processes. Pre requisites: CE 742 and CE 743.

CE 745 Water and Wastewater Treatment

 Laboratory*1:2:3
Laboratory process course in water and wastewater engineerIng dealing with physical, chemical and biological methods and principles. Processes include disinfection, softening, sedimentation, oxygen transfer, coagulation, adsorption, filtration, aerobic and anaerobic biological treatment systems. Warburg analysis of a waste. Prerequisite: CE 743.

CE 74 An industriai Waste Treatment

$21 / 2: 0: 3$
Study of sources of industrial wastewaters and their treatability of physical, chemical and bioiogical processes. Problems and solutions involved in combining municipal and industrial waste treatment. Status of government regulations imposed on industries in prevention of water pollution.

CE 747 Analysis of Stream and Estuary Potlution $\quad 21 / 20: 0: 3$ Analysis of dispersal and decay of contaminants introduced into lakea; streams, estuaries, oceans. Effects of pollutants on chemical quality and ecology of receiving waters.

CE 74 Sanitary Engineering Design
$1: 22$
Design of water supply and wastewater treatment systems. Topics of special interest. Prerequisite: CE 743.

CE 754 Environmental Health Engineering 2t/20:3
Theory, methodology and instrumentation associated with environmental health. Topics include epidemiology, food vectors, radiatlon, pest control, heating, ventilation, noise, illumination, hazards of home and community environment, other subjects which affect public health.

CE 752 Alr Pollution*
2 $1 / 2: 00: 3$
Study of the causes and effects of air poliution. Methods of sampling. Interpretation of data. Meteorological aspects. Methods of air poliution control.

CE753 Dlapersion of Pollutants*
$21 / 2,0,3$
Introduction to theory of diffustion of pollutants and methods for estimation of dispersion in atmosphere. Nature of mean and turbulent motions in various urban, rurel, valley environments; effects of these on dispersion of pollutants. Mean and turbulert motions in oceanic and coastal waters and ftesh-water bodies. Dispersion of poliutants in sea, lakes, rivers.

Aleo liated under CH 753

CE 755 Alr Poilution Chemistry*

21/:0.0.3
Significant chemical reactions occurring in lower atmosphere and basic chemistry required to understand problems peculiar to air poilution field. Chemistry applicable to fuei combustion and other sources of atmospheric pollution.

Also ilsted under CH 755

CE 756 Ar Pollution Analyeis* $21 / 2,0: 3$
Ptinciples of reactlon or physical measurement used for variety of enalytical equipment empioyed in air poilution studies. Analyais of various atmospheres and evaluation of resulte. Prerequisite: CE 755.
Arso Hated under CH 756
CE757 As Pollution Effects*
2 $1 / 2.003$
Effecte of atmospheric poliution on various forms of jife, including both direct and secondary effects. Corrosion or contamination of inert matter by pollutanta.

CE 756 Ar Politutant Engineering Controt
 214:0:3

Fundementals of adsorptive, absorptive, and reactive recovery and control; rembval of gaseous oxides of nitrogen, carbon and sulfur; removal of particulates from moving and stationary sources; removal of fluorides, complex oxidants and mercury vapors. Taught in the Department of Chemical Engineering.
Also Hated under CH 752

CE 759 Engineering Aspects of Regional and Master Planning

21/2:0:3
Stresses Influence and especially constraints imposed on population levels and land use by various engineering systems required to service the plan reglon. Current concepts and methodology dealing with conservation of resources and evaluation of environmental impact of engineering systems and techniques for decislon-making for selecting engineering afternatlves in regional planning. Prerequisite: enginearing degree.

CE 760 Panning and Engineering of Uiban Enwlronmental Systems I

21/2:0:3
Consideration of sociological, political and economic values in planning and engineering of urban communities. Recent techniques for collection, processing and application of demographic, geographic and physical data In design of hous Ing, water supply, solid and Ilquid waste disposal, other urban anvironmental subsystems. Zoning regulation and building codes in urban renewal. Prerequisites: B.S. in C.E. (or other angineering degree and equivalent experience).

CE 781 Planning and Engineering of Uban

 Environmental Syatems II"21/2:0:3
Continuation of CE 760. Technology associated with productlon of housing through conventional and industrialized operatlons. Influence of building codes, techniques for assessment of quantity and condition of housing stock in urban communities, costs and financial systems for detivery. New town design and renewal of urban communities in context of residentlal housing and supportive service systems. Assessment of energy needs and delivery systems for urban communities. Prerequisite: engineering degree.

CE Tgit Uban Environmental Syatems Workshop* 21/2:0:3 Application of principles, methodology and techniques developed in CE 760 to planning and engineering of urban communities. Team approach to comprehensive planning of an urban community including housing, water supply, waste disposal, and consideration of physical needs and other implicatlons of service systems such as police, fire protection, hospitals. Prerequisite: CE 760.

CE 783 Aerodynamics of the Urban Environment I* $\quad 21 / 2,0 ; 3$ Aerodynamic forces and pressures on nonaeronautical shapes -vehicles, buildings, other structures. Unsteady forces and dynamic interaction with structures. Motion and thermal characterlstics of atmospheric boundary layer. Air flow and thermal characteristics over urban regions and various topographical conflgurations.
Afso ilsted under AM 751

CE 784 Aerodynamica of the Urban Environment II*

21/2.0:3
Travel and dispersal of atmospheric pollutants. Puume rise and dispersion theorles with applications to unifom and nonuniform atmospheres. Effects of boundary conflgurations of varlous scates-buildings, uban regions, bodles of water, mountains, valleys. Multiple source urban dispersion. Scale model experimentetion.
Aleo llated under AM 752
CE 785 The Planet Earth*
21/2.0:3
Survey of major disciplines of geophysics, with emphasis on general meteorology and oceanography.

CE 768 Industifal Environmental

 Haplth Engineering* $21 / 20: 3$Pertalns to fleld of Industrial hygiene, occupational health and workroom sefety. Study of causes and effects leading to stresses that rnay ceuse sickness, Impelred health and wellibeing, or discomfort among workers and indlrectly, affect com-
munity health. Discussion includes consideration of chemical, biological, ergonomic and physical stresses; enginearing controls designed to atleviate or eliminate such stresses, and the organizations and administrative regulations pertaining to federal, state and local control of the environmental hazards found within industrial establishments. Prerequisite: CE 751.

CE 767 Environmental Impact Evaluation*
$21 / 20: 3$
An examination of legal and technical requirements in the preparatlon of environmental impacts. Considerations Include legal and technical requirements, the procedure and the interdisciplinary nature of the analysis. Topics include overall impact evaluation, problem definition, quantification of impact, methods used in the analysis, field evaluations, mitigations, hearing procedures and management. Practical examples and case studies used.

CE 770 Solid Waste Management

21/2:0:3
Engineering aspects of solid waste collection, transport and disposal, Including incineration, sanitary landfill, composting, recovery and reutilization, economic evaluation of factors affecting sefection of disposal methods.

CE 771.772 Speclał Topics in Envirormental

 Engineering I*, II*21/2.0.3 Current topics include nitrification in natural and treated waters, organic removal from water supplies, water reuse, spe clalized aspects of biological wastewater treatment, environmental health, solids disposal, and modeling natural waters and treatment systems. Prerequisite: permission of the instructor.

HIGHWAY ENGINEERING

Prerequidtes for all coursers MA 104, CE 351.

CE 801 Flexible Pavementa-Design and Evaluation*

21:3
Design and constructlon of flexible highway pavements including road-mix, plant-mix and high-type bituminous pavements. Pavement performance and evaluation. Laboratory tests of bituminous materials and mixturas, including Marshall, Hubbard-Field and Hveem stability tests. Viscosity by capillary viscosimeter.
Also listed under TR 720

CE 802 Rigld Pavements-Design and

Evaluation*

21:3
Design and construction of sigid highway and airport pavements. Pavement performance and evaluation. Laboratory tests of plain and reinforced concrete pavements. Nondestructive testing techniques. Prerequisite: CE 252.
Also liated under TR 721
CE 604 Travel Demand Forecasting
21/2.0.3
Theory and applications of travel forecasting methods to predict the amount and nature of travel on transportation systems. Emphasis on UMTA Transportation Planning System models. Prerequisite: MA 551 or equivalent.
Aleo listed under TR 601

CE 605 Traffle Studies

21/200:3
Techniques for collection of traffic data and information: speed, travel time, volume, origin-destination, parking, accidents, etc. Analysis and interpretation of results. Corrective actions and program formulation based on study results. Prerequisites: MA 551 and TR 701, or equivalents.
Also listed under TR 703

CE808 Trafflc Capacity and Design

25/2:0.3
The use of highway capacity analysis techniques in design, planning and operational analysis treated. Highway Capacity Manual methods as well as foreign techniques and recent research developments are discussed and illustrated. Functional design of treeways, arterials, streets and rural highways covered.
Also listed under TR 704
CE 810 Principlas of Uban and Reglonal Pranning
$21 / 200 \cdot 3$
A survey of the contemporary theory and methods of the plann. ing function.
Also listed under TR 630
CE812 Transportation Economics $\quad 21 / 200: 3$
A brief review of the principles and concepts of engineering economic analysis and a thorough application of these principles to decision-making in the transpontation sector, methods for estimation of capital, operating and direct-user costs in transportation; benefit concepts and estimation of benefits; indirect effects; transportation finance and taxation; concepts of public finance and equity in taxation.

Aso ilsted under TR 750

CE 821 Design of Traftle Facilites

21/2:0.3
Presents functional and preliminary design principles and analyses for freeways and arteriais. Interchange design for freeway facilities and design of at-grade intersections, using principles of channellzation. Design of parking garages and parking lots.
Atso listed under TR 710
CE 840 Planning and Design of Terminalis $21 / 2003$ introductory course in passenger and frelght terminals wlth emphasis on the system descriptlon of these faclities. Land, marine and air terminals discussed. Methods discussed for determining the level of service for pedestrian flows, service times for passengers boarding and altghting, transit vehicles and simulatlon methods for translt terminals.

Aleo lleted under TR 670

CE841 Akport Plarning and Deatgn 21/2003
Techniques for forecasting air passenger traffle, aircraft operations at commercial and general avation facilities. Princlples and practices for the planning and design of terminal facilities, ground transportation systems, parking facilittes, runways and navigational alds. Airport site selection, configuration and economics.
Also listed under TR 871
CE 848 Analytical Photogrammetry*
21/20:3
Detalled presentation of various modern methods for determinetion of relative and absolute orientation of single photographs and stero-pairs by analytical methods utilizing data from comparator measurements. Discussion of strip and block adjustments in aerial trlangulation.

CE849 Geodeay*

21/20:3
Computation of geodetic positions. PToperties of earth's flgure, theorties of astronomical, magnetic and gravity observations, appication of teast squares to adjustment of surveys. Poaltion determination through satellite observations.

GEOTECHNICAL ENGINEERING

Pitroqulsites for all cournes: HA 104, CE 232, CE 317.
CE 851 Earth Pressurtes and Retaining Structure ${ }^{*}$ 21/10:3
Conjugate stress relationships in infinite slopes in granular and cohesive soils. Study of classical works of Rankine, Coulomb,

Keriset and others for determining pressure distributions on rigid-type structures retaining soil masses. Effects of ground water, seepage, surcharge loadings. Shaflow and deep sliding failures on retaining structures.

CE 852 Earth Prossures and Retaining

 Structures il*21/2:0:3
Modern earth pressure theories. Evaluation of realms of validity of classical and modern theories. Classical methods for determining pressure distributlons on flexible-type retaining structures. Critical evaluation of recent largescale model tests of sheet-pile bulkheads and their value in supplying design criteria. Treatment of silos, bins, other containers of granular material. Prerequisite: CE 851.

CE861 Soll Mechanics $1^{*} \quad 21 / 20: 3$ Study of index tests by classical and statistical procedures with emphasis on particle size distribution, particle shape and packing. Stress distrlbution in homogeneous and layered etastic halt-spaces due to surface loading. Permeability, capiliarity, absorption and soll-water tension. Flow networks. Theory of wells and use of well data in field measurement of permeability.

CE 682 Soll Mecthanices $1 \mathrm{I}^{*}$

2\%:0:3
Classical consolidation theory and recent modifications and extensions; application to problem of settlement of structures. Detailed study of stress-strain-strength reiationships in granular and cohesive soils; application to thooretical study of bearing capacity and latersi earth pressure. Stability of slopes and landsilde phenomena. Prerequisite: CE 861.
CE883 Experimental Soll Mochanics**
1:21/4:3
Critical evaluation of standard testing procedures for identification and classiffcation tests. Detalled examination of permeablity, capiliarlty and seepage phenomenon using both soil samples and electric analogs. One-dimenslonal consolidation test. Treatment of shear strength and the static trlexial compression test and its several varistions. Special tests. Prerequisite: CE 861.

CE871 Foundation Enyineerhgi*

$21 / 2: 0 ; 3$ Soli eampling and exploration procedures; emphasis on standard penetration teet. Analytical procedures for determining bearing capacity as function of stability and settlements. Plateloading test. Application to analysia and design of footings, mats, piles. Modulus of subgrade reaction and realm of validity.

CE 872 Foundation Engineoring 1I*

21/2:0:3
Settiement studies with attention to elastic, primary and secondary settlements. Role of soils laboratory in providing necessary soil parameters. Study of behavior of single piles, pile driving and pile groups from viewpoint of toad capacity and settlement. Negative skin friction. Analysis and design of cofferdams and caissons. Prerequisite: CE 871.

CE 881-802 Spectal Topica in Soll Mechanics and

 Foundation Englnoetng 1 ill21/1:0:3
Current toples of interest including theoretical determination of plle capacitles, sheet plle bulkhead and trench problems, stresses on tunnels, theoretical approach to soil stablity, refinements in settiement analysis and digitai computer solutlon of problems in foundation engineering. Soli-structura interactlon problems. PTerequisite: CE 851 or CE 861 or CE 871.

CE 860 Earthquatice Engineerting :*
21/2:0:3
Basic concept of selsmology as applied to design of civil engineerlng structures. Geologic considerations related to earthquakes. Earthquake distribution, type, magnitude, intensity, energy and selsmic reglonalization. Instrumentation and spectrum theory. Effects of earthquakes on soil and response of etructures to earthquakes as influenced by underlying rock andor soll formations.

CE 891 Earthquake Engineering If*
 21/2:0.3

Effects of earthquakes on coastal structures. Soil-9tructure interaction problems. Slope stability probiens developed by earthquake activity. Emphasis on rational design criteria for underground and elevated structures constructed of steel or reinforced concrete. Prerequisite: CE 890.

CE 882 Soil Dynamics* 21/2:0:3

Treatment of single-degree of freedom systems. Wave propagation in homogeneous and layered half-spaces. Behavior of dynamically loaded soils. Theortes for vibrations of foundations on elastic media. Design procedures for dynamically loaded foundations. Half-space theory and lumped parameter analogs. Prerequisite: CE 861.

CE 894 Marine Geotechnology* 21/2:0:3 Geological nature of marine sediments and comparison with terrestrial soit deposits. Sampling techniques and problerns of obtaining undisturbed samples and cores; in situ measurements of physical and mechanical properties of marine soils. Comparison of stress-strain, strength and consolidation characteristics of terrestrial and marine soils. Stability of submerged slopes and slumping, bearing capacity, breakout resistance, marine anchors.

CE 927 Energy Policy lesues

21/2:0:3
See Energy Program for details.

CE 828 Energy Rescurce Distribution and Conversion Techncolcay See Energy Program for details.

PUBLIC ADMINISTRATION

CE 832 Engineering Projects Relsted to Public Administration
sach 3 units
See Polytechnic's Cooperative Program with New York University's Graduate School of Public Administration for details.

CONSTRUCTION MANAGEMENT

CE825 Construetlon Administration*
 $21 / 2: 0: 3$

Management problems unique to construction business including ticensing, bonding, insurance, short-term financing, employee relations. Prerequisite: MG 600.

Also listed under MG 825

CE 828 Construction Estimates and Costs* \quad 2½0:3

Estimates, costs from viewpoint of contractor or construction engineer, details of estimating, emphasis on labor, material, equipment, overhead costs. Prerequisites: MG 811 and CE 825. Also listed under MG 826

CE 827 Specifications and Contracts*
21/2:X3
Principles of contract law as applied to construction industry; legal problems in preparing and administering construction contracts. Prerequisite: CE 825.
Also listed under Mai 827

GUIDED READINGS SEMINARS, PROJECTS AND THESES

CE 801 Guided Readings in Clvil Engineering 3 units Individual study of selected literature in civil engineering under guidance of faculty adviser. Acceptable written report or successful comptetion of examination required. Only one registration permitted. Prerequisite: instructor's approval.

CE 952 Seminar in Clvil Engineering
nc
Lectures on recent developments in civil engineering given by representatives from industry, other research and educational institutions, and Polytechnic graduate students and faculty.

CE 806 Project for Msster's Degree

oach 3 units
An analytical, design or experimental study in civil engineering under guidance of faculty adviser. Written report required. Project may be expanded into master's thesis with approval of thesis adviser. Registration for a minimurn total of six (6) units required. A maximum of six project units counted toward degree. Prerequisites: degree status and project adviser's approval.

CE 967 Thesis for Degree of Master of Science each 3 units An original investigation or design in student's principal field of study prepared under close supervision of faculty adviser. Candidate must successfully defend thesis orally. Registration for a minimum total of twelve (12) units required. Maximum of 12 units counted toward degree. Prerequisites: degree status and thesis adviser's approval.

CE 688 Project for Degree of Engineer
each 3 units Comprehensive planning and design of civil engineering project under guidance of faculty adviser. Emphasis on up-to-date techniques. Written report to be submitted on completion of project. Oral examination on project subject must be passed. Registration for minimum total of 12 units required. Maximum of 12 units counted toward degree. Prerequisites: degree status and project adviser's approval.

CE 899 Dissertation for Degree of Doctor of Phllosophy sach 8 units independent original investigation of civil engineering problem. Must demonstrate creativity and include features of originality and utility worthy of publication in recognized engineering fournal. Candidate must successfully defend thesis orally. Hegistration for minimum of 30 thesis units required prior to defense. Registration must be for minimum of six units per term. Prerequisites: degree status, passing the qualifying examination and thesis adviser's approval.

FACULTY

Henry F. Soehngen, Professor and Head of Civil and Environmental Engineering
B.C.E., M.C.E., Polytechnic Institute of Brooklyn; M.S., International Training Center for Aerial Surveys, Deift (Netherlands)
Computer science, surveying and photogrammetry
Paul R. DeCicco, Professor and Director of CUES
B.C.E., M.C.E., Polytechnic Institute of Brooklyn

Urban systems, fire safety
Alvin S. Goodman, Protessor of Civil Engineering B.C.E., CCNY; M.S.C.E., Columbia University; Ph.D., New York University Water resources

James Michalos, Professor of Civil Engineering B.S., University of Wisconsin; M.Eng., Yale University; Ph.D., Northwestern University Structures

Ping Chun Wang, Professor of Civil Engineering B.S.C.E., National Central University of China; M.S.C.E., Ph.D., University of Illinois Structures

Raul R. Cardenas, Jr., Associate Professor of Environmental Engineering
B.A., University of Texas; M.S.,

Ph.D., New York University
Environmental health science, sanitary engineering
Erick R. Gidiund, Associate Professor of Civil Engineering
B.C.E., Ph.D., University of Washington

Hydraulic engineering
Albert H. Grlswold, Associate Professor of Civil Engineering
B.S.C.E., University of Connecticut; M.S.C.E. Columbia University
Fluid mechanics
Bemard Grossfield, Associate Professor of Civil Engineering
B.C.E., M.C.E., Eng. Sc. D., New York University Structures

Stephen T. Mikochik, Associate Professor of Civil Engineering
B.C.E., Manhattan College; M.S., Rutgers-The State University
Soil mechanics and foundations
Alan H. Molof, Associate Professor of Environmental Engineering
B.S., Bucknell University; M.S.E. (Ch.E.), M.S.E.
(Sanitary Eng.), Ph.D., University of Michigan
Environmental engineering, water qualify
Matthew W. Stewart, Associate Professor of Civil Engineering
B.C.E., M.C.E., Polytechnic Institute of Brookiyn

Hydraulic engineering
George Fagan, Academic Associate
B.S., Polytechnic Institute of Brooklyn; M.S.C.E., Ph.D., Polytechnic Institute of New York Water resources engineering

ADJUNCT FACULTY

William T. Ingram, Adjunct Professor of Environmental Engineering
A.B., Stanford University; M.P.H., The Johns Hopkins University
Environmental engineering
Siddhartha Bagchi, Lecturer
B.S.C.E., M.S.C.E., Calcutta University; Ph.D., Polytechnic Institute of New York
Water resources and hydraulic engineering
Herman Borme, Lecturer
B.C.E., CCNY; M.S.C.E., Columbia University Water resources and hydraulic engineering

Joseph C. Cataldo, Lecturer
B.C.E., M.S.C.E., Ph.D., CCNY

Environmental engineering
Warren H. Chesner, Lecturer
B.C.E., CCNY; M.C.E., Ph.D., New York University

Environmental engineering
Clifford Gordon, Lecturer
B.S.C.E., Missouri School of Mines

Construction management
Wilianm F. Graner, Jr., Lecturer
B.S., Polytechnic Instifute of Brooklyn; M.C.E.,

New York University
Environmental engineering
John K. Paik, Lecturer
B.S., Southern Methodist University; M.S., Ph.D., New

York University
Structures
Kevin J. Phillips, Lecturer
B.C.E., CCNY; M.S. (Environmental Eng.),

Massachusetts Institute of Technology; Ph.D.,
Polytechnic Institute of New York
Environmental engineering
Ahmed H. Sayed, Lecturer
B.S., Cairo University; M.S., Ph.D., Polytechnic Institute of New York
Structures
Sri K. Sinha, Lecturer
B.S.C.E., Patna University; M.S., CCNY

Structures
Herbert F. Shatzman, Lecturer
B.C.E., CCNY

Construction management
M. Llewellyn Thatcher, Adjunct Associate Professor B.S.E., Princeton University; B.S., Columbia University; S.M., Sc.D., Massachusetts Institute of Technology Ocean and coastal engineering

Joseph W. Vellozzi, Lecturer
B.S., University of Miami; M.S., Ph.D., Rensselaer Polytechnic Institute

Structures

Constantine Yapijakis, Lecturer
M.C.E., National Technical University of Athens; M.S., New York University; Ph.D., Polytechnic Institute of New York
Environmental health engineering

EMERITUS FACULTY

James E. Miller, Professor Emeritus of Meteorology A.B., Central Methodist College; M.S., New York University
Meteorology and oceanography

COMPUTER SCIENCE

Computer science is the study of both the theory and the applications of computers. Computer scientists are interested in information processing, simulation and modeling of various systems, and the theoretical foundations of computation. They are concerned with the development of efficient algorithms, of effective languages with which to represent algorithms and of effective means to structure and access information.

The computer science program is administered by the Division of Computer Science of the Department of Electrical Engineering and Computer Science. Its faculty directs the degree programs in computer science and Information systems and, in cooperation with the electrical engineering faculty, the degree programs in computer engineering.

UNDERGRADUATE PROGRAMS

The programs in computers are designed to provide the student with broad, basic preparation in the theory, organization and application of computers and information processing systems. Foundation courses teach the basics of hardware, sottware and their interrelationships. Practical courses emphasize the use of both microcomputers and large computers. The graduate is ready for immediate employment in business and government or for further graduate study.

The student may choose either one of the following two programs: (a) the computer science program leading to the bachelor of science in computer science degree described in the present section of the catalog, or (b) the computer englneering option leading to the bachelor of science In electrical engineering degree described in the electrical engineering section of the cataiog (pp. 92). Both programs draw from the same core curriculum of computer courses and both require that the student take a balanced selection of software (programming languages, etc.) and hardware (computer architecture, minicomputer laboratory, etc.) courses; both programs also require the same mathematics, physics and chemistry courses.

The computer sclence undergraduate program is designed for the student who wishes to major in computer sclence and pursue a minor in a second area,
which may be chosen according to individual interest. The core sequence consists of 33 credits in computer science. Additionally, the curriculum provides a sound foundation in mathematics, physics, chemistry and in the social sciences and humanities. A minor specialty consisting of a minimum of 12 credlts in an integrated, well-defined area encourages the student to develop some depth of understanding in a field other than computer science. The minor specialty is chosen by the student in consultation with and approval of an academic adviser. Although the minor can be chosen from any of the areas of science and engineering, the computer engineering option should be considered by those students interested in combining electrical engineering and computer science. A total of 128 credits is required for the B.S. (computer science) degree.

Combined Computer Science and Life Sciences Pro-

 grams-Students interested in combining a career in the life sciences with computer science have a choice of two programs: (a) the bachelor's degree program in computer science with a minor in life sciences or bioengineering, with an optional fith year leading to the master of science in bioengineering degree, and (b) the computer science option leading to the bachelor's degree in life sciences, with an optional fifth year leading to the master's degree in computer science. The computer science option for the bachelor of science in life sciences degree incorporates a strong minor in computer sciences courses, including the two computer laboratory courses taken by students in the computer science and computer engineering programs. Graduates of this option are well prepared for the graduate program in computer science. Consult the life sciences section of the catalog for details of the bachelor's curriculum.Transfer Students-Transfer students are accepted into the computer science B.S. program on the same basis described earlier in the catalog under admissions.

Graduates of technology programs may be able to fulfill the requirements for the bachelor's degree in computer science in two to three-and-one half years, depending on the scope and level of theit previous education. Consult an undergraduate adviser for details.

Curriculum for the B.S. Degree in Computer Science for Freshmen Entering 1981)

Freshman Year

First Semester

No.	Subject
CS 111	Computer Progr. I
MA t01	Calculus I
PH 101	Introductory Physics I
CM to1	General Chemistry I
CM 111	Gen. Chem. Lab
HU 101	College Composition
PE 101	Physical Educationr

Hours/Wbek		
Cl.	Lab.	Cr.
3	0	3
4	0	4
3	0	3
$2^{1 / 2}$	0	$21 / 2$
0	$11 / 2$	$1 / 2$
3	0	3
0	2	0

Second	Semester
No.	Subject
CS 203	Computer Progr. II
MA 102	Celculus II
PH 102	introductory Physics II
CM 102	General Chemistry II
CM 112	Gen. Chem. Lab. II
HU 200	Intro. to Literature
PE 102	Physical Education'

Hours/Week		
C.	Lab.	C.
3	0	3
4	0	4
$31 / 2$	$11 / 2$	4
$21 / 2$	0	$21 / 2$
0	$11 / 2$	$1 / 2$
3	0	3
0	2	0
		17

Sophomore Year

CS 204	Data Structures	3	0	3
MA 104	Appl. Diff. Equations	3	0	3
PH to3	Introductory Fhysics III	$21 / 2$	$11 / 2$	3
HU 1t0	Report Wrting In	3	0	3
	Humn Soc. Sci. electiven	3	0	3
PE 103	Physical Education:	0	2	0
				15

CS 236	Switching \& Dig. Sys.	3	0	3
MA 103	Calculus 11:	3	0	3
PH 230	Atom. \& Nuci. Physics	2	0	2
SS 104	Conternp. History ${ }^{\text {m }}$	3	0	3
	Hum.ISoc. Sci. electiveh	3	0	3
	Elective			3
PE 104	Physical Education	0	2	0
				17

Junlor Year

CS 205	Ass'y \& Machine Lang.	3	0	3
CS 237	Computer Architecture	3	0	3
MA 223	Probability	3	0	3
	Minor specialty		3	
	Hum.Soc. Scl. elective		3	0
				$\frac{3}{15}$

$\operatorname{CS} 208$	Compiters	3	0	3
CS 297	Computer Lab. ${ }^{\text {In }}$	1	3	2
MA 358	Intro. Numerical Anal.	3	0	3
	Minor specialtya			3
	Electivep			3
	Hum/Soc. Sci. electiveh	3	0	3

Senior Year

CS 238	Computer Systems	3	0	3
CS 299	Computer Lab H	1	3	2
CS 397	Sr. Seminar In CS	2	0	2
	Minor specialty			
	Electivetip	3		
	HumJSoc. Sci. electlveh	3	0	3
				$\frac{3}{16}$

CS 398

Sr. Project in CS	1	6	3
MA or CS elective	3	0	3
Minor specialty			3
Electiver,			3
HumJSoc. Sct. electiven	3	0	$\frac{3}{15}$

Total credits required for graduation: 128
"Students shall complete a minimum 30 credits in humanities and social sciences courses. Students must take HU 101 and HJ 110 , and either HU 200 and SS 104 or is 140-141. Students who are placed in HU 103 on the basis of the English Composi:ton Pjacement Test administered at the Polytechnic to all incoming students may substitute HU 103 for HU 501 . Students placed in HU 008 or HU 009 must complete this noncredit writing course before taking HU 101 (or HU 103).

In addition, the student is requlred to select an area of concentfation (such es literature, communlcations, the arts, philosophy, or comparative religion In the Department of Humanities, or political sclence, economics, history, anthropology, or psychoiogy in the Department of Social Sciences) and to elect at least three courses in this concentration, in consuitatlon whth an adtylser. A modern language may ba chosen as a suitable concentration, but a student without prior knowledge of the language should devote at least 12 credit hours to the subject.

For the remaining credits in the humanitles/social science requirement, the student should seject courses in areas other than that of the concentration.
nCS 297 (1:3:2) may be replaced by EE 188 (2:3:3).
PThe elective credits should be from engineering and/or science.

9The minor specialty consists of a substantial concentration in a particuler subject ares other than computer science, approved by the departmental adviser. Examples of acceptable minor areas are statistics, system analybis, operations te search, controle, communications, psychology. Other minors may be arranged to satisty the partcular interest of the student.
'ROTC students should note that freshmen and sophomores may substitute zero-credit mifitary science courses for PE 101-104 (physical education); juniors and seniors may substtute three of the following two-credit courses: MS $131,142,143$, 146, for six credits of technical electives.

Transfer credits granted for graduates of programs at other schools are subject to frequent changes, based on reevaluation of content and level. Thus, students completing the same program, but in different years, may receive different amounts of transfer credit. Consult the computer sciences undergraduate adviser for current information. Transter students must arrive and present their records for evaiuation at least one week before the regular registration period for their first semester.

Senior Honor Students-A full-time day student whose performance in the first three years is outstanding will be named as a senior honor student and, in consultation with the adviser, is permitted to replace some of the required senior technical courses by other courses, usually more advanced, which are directed to the student's professional goals.

DEPARTMENTAL STANDARDS AND PROBATION

To earn a degree in computer science, students must earn a minimum C average (2.0 grade point average) in all technical courses: mathematics, physics, computers and engineering.

Students are automaticaliy placed on departmental probation if their semester or cumulative technical average is less than 2.0 , if they receive C - or less in any sophomore year computer science course or if they fail to obey course prerequisites. Students on probation must consult with their advisers during registration week prior to the beginning of each term. They may be required to repeat courses in which they have earned a grade of $\mathrm{C}-$ or less or an Incomplete, to postpone an advanced course, to take a special program of courses to improve their understanding, or to withdraw from the department in cases of repeated departmental probation. Almost without exception, students earning a C - or less in CS 111 or CS 203 wilt be required to repeat the course. Likewise a student who earns a combined average C - of less in all technical courses during one semester, or in a closely related sequence of courses, will almost invariably be required to repeat some of these courses.

GRADUATE STUDY

The Division of Computer Science offers master's and doctor's degree programs in computer science, and a master's degree program in information systems.

The computer science master's program is intended to develop competence in such basic areas as information structures, programming languages, computer design and organization, compilers and translators, operating systems, artificial intelligence, interactive computer graphics, information retrieval, data-base management, switching theory, theory of computation, numerical analysis, software reliability.

The information systems master's program is intended to provide graduate-level instruction for students interested in pursuing professional work in the development, specification and management of information and data-processing systems.

Both programs are specifically structured to enable the graduate to keep abreast of the developments in the chosen discipline and to interact with other disciplines. Students in both programs may extend their studies into related areas such as operations research, mathematics, electrical engineering, management, statistics and economics, in accordance with individual interests.

Outstanding students are advised to apply for financial aid in the form of a research fellowship, teaching fellowship or partial tuition remission.

REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE

Entrance Requirements: For entrance to the master of science degree programs, an undergraduate degree in computer science, mathematics, science or engineering, with a superior undergraduate record, from an accredited institution, is desirable. Applicants having degrees in other fields will be considered for admission on an individual basis. Generally, entering students are expected to have a knowledge of mathematics through calculus. Additional entrance requirements for the two M.S. degree programs are as follows:

Computer Science:

1. At least one year of university-level science.
2. A working knowledge of a higher-level programming language (such as PLl).
3. A basic understanding of computer fundamentals, such as: computer organization and operations, data structures, assembly language programming, elements of logic and automata.

Information Systems:

A working knowledge of PLI and/or FORTRAN programming languages equivalent to CS 530 or CS 531 .

It is anticipated that entering students with a B.S. degree in computer science as well as students with degrees in technical areas and strong minors in computer science from an accredited institution will unconditionally satisfy the entrance requirements for the M.S. degree programs.

Students having superior academic credentials but lacking sufficient background will be required by the divisional director to take additional preparatory courses, as specified from the available computer science undergraduate courses and/or from the series of four graduate orientation courses, CS 530 , CS 540 , CS 550, CS 560. The successful completion of the specified preparatory courses with a B average or better is a necessary condition for admission to degree status.

The demonstrated ability to communicate in written and spoken English is an essential ingredient for success in pursuing graduate studies in computer science and information systems and is required for degree status. Foreign students and others for whom English is a second language should plan to take HU 008 and HU 103 (as determined by the English Composition Placement Test administered by the Department of Humanities prior to the start of each semester). Alternatively, a student can demonstrate competence in English by adequate grades on the TOEFL (Test of English as a Foreign Language) through the services of TOEFL, Box 899, Princeton, N.J. 08541.

Admission with advanced standing is accepted in accord with Polytechnic regulations published elsewhere in this catalog. A maximum of 9 units may be applied to the M.S. degree for previous graduate work at an acceptable institution.

Degree Requirements: To satisfy the requirements for the master's degrees, the student must complete a total of 36 units as described below, with an overall average of \mathbf{B}. In addition, a B average is required in specified groups of courses as indlcated below.

Students with a strong undergraduate computer science background may be allowed to replace re qulred courses with more advanced electives. Permisslon of the graduate adviser is required.

Master of Sclence (Computer Science major)

1. Core Requirement (B average required)	
CS 603	Information Structures
	and Algorithms
CS 613	Computer Architectura I
CS 623	Operating Systems I
CS 637	Programming Languages
CS 641	Compiter Design and
	Construction I

2. One of the following three courses:

CS 675 Theory of Computation
MA 821 Numerical and ApproxImate Analysis I
A course in modern algebra or other graduate-level mathematics course, as approved by an adviser.
3. Two one-year course sequences from the list:
CS 613, CS 614 Computer Architecture I, II
CS 623, CS 624 Operating Systems I, II
CS 641, CS 642 Compller Design and Construction I, II
CS 681, CS 662 Artificiel Intelligence I, It CS 871, CS 672 Switching and Automata i, II
4. Approved elective courses of which a maximum of 6 units may be a thesls

Thesis: Exceptional students may elect to write a master's thesis for which no more than 6 units toward the degree may be earned. Such students should find an appropriate adviser who has agreed to monitor the thesis research. Such research need not be original, but should adequately demonstrate the student's proficiency in the subject material. A defense of the master's thesis with at least three professors in attendance is required.

Master of Science (Information Systems major)

Units
Required Courses
CS 603 Information Structures and Algorithms
CS 606 Software Engineering
CS 608 Data-Base Management Systems
CS 609 Information Analysis and System Design I
CS 623 Operating Systems 1
IE 600 Engineering Economic Analysis
MA 562 Statlstics
MG 601 Organizational Behavior
MG 810 Project Planning and Control

Electives

9
Three courses as approved by an adviser, including at least one course from each of the following groups: Group A: CS 610, 616, 624, 633, 637, 653, 661. Group B: IE 619; OR 614, 627, 628; MG 606, 624, 762,820.

REQUIREMENTS FOR THE DOCTOR'S DEGREE

Graduate students who have exhibited a high degree of scholastic proficiency and have given evidence of ability for independent scholarly work may consider extending their goals toward the degree of doctor of philosophy (computer science major). The re quirements for admission to the program include the following:

1. A B.S. degree in science, engineering or manage ment from an accredited school and a superior academic record.
2. An M.S. degree or one year of graduate work in an analytically-based area, and a superior academic record.

On admission to the program, the student must submit for approval a plan of study consistent with the Ph.D. requirements shown below. Further details concerning procedure are contained in the Guidance for Ph.D. Students brochure available from the Division of Computer Science.

1. A minimum of 90 units of graduate work beyond the B.S. degree, including 24 units of dissertation.
2. Qualitatlve rather than quantitative considerations will determine the final approval of the program of
graduate studies; however, the following should be included:
a. The basic M.S. requirements in computer science.
b. A major concentration in some computer science area.
c. Appropriate supporting courses in noncomputer areas, for breadth.
d. One meaningful minor concentration in an area other than computer science (a minimum of four courses).

Requirements b and c must be approved by the Oivision of Computer Science; requirement d must be approved by the Division of Computer Science or by a minor adviser.

3. Reading knowledge of French, German or Russian.

4. Qualifying examinations consisting of 3 or 4 written examinations, generally covering topics corresponding to the M.S. requirements.
5. Presentation of an in-depth seminar talk on the subject of the dissertation, at such time as the thesis adviser deems appropriate.
6. Preparation and defense of a scholarly dissertation that embodies an original research contribution.

UNDERGRADUATE COURSES

Students are advised to consult the Departmental Student Manual and the Registration Builstin for changes in courses, course content and prerequisites in effect subsequent to the pubilication of this catalog edition.

General Prerequislte: Students may not register for any funiorand senior-fevel courses until every freshman requirement is completed.

CS 100 Introduction to Computer Programming

20:2
Introduction to computers to develop fundamental understanding of their use. Early use of computer permits immediate solutlons to simple engineerlng problems. Development of more complex programming techniques for use in subsequent engineering and computer courses. FORTRAN language used.

CS 101 Introduction to Digltal Computing

3.0:3

A firet course in computing. Analyais of problems for computer solution. Organization and characteristics of computers. Structure and properties of algorithms and programs, flow charting. Debugging and verification. Number systems, data representa. thon, numerical error analysis. FORTAN IV language used.

CS111 Computer Proaramming I

3:0:3
Types of languages, problem-solving, algorithms, flow charts. Basic PLI instructlons, simple programs, programming style, structured programs. Character and bit strings, arrays, bulit-in functions, function and subroutine procedures. Probiems assigned from several disciplines are solved on the Polytechnic computer. Prerequisite: MA 101.

CS203 Computer Programming II
3:0:3
Elements of FORTRAN, BASIC, ALGOL, SNOBOL and APL Formulation of algorthme for numerical solution of problems:
algebraic and transcendental equations in one unknown, integration, interpolation, simultaneous linear equations and least-square approximation. The PASCAL programming language: data types, aesignments, loops and conditional statements, arrays and subprograms. Prereauisitas: CS 111, MA 102

CS204 Introduction to Data Structures
300.3

Mathamatical models and computer representations. Operations on arrays, stacks, queues. Sequential and linked representations, tinear data structures, trees and graphs. Sorting and searching. Data access. Dynamic allocation of storage. Manjpulation of strings. Prerequisite: CS 203.

CS 205 Assembly and Machine

Language Programming
3:0:3
Assembly and machine language instructlons for the IBM Syatem 370. Binary and hexadecimal arithmetic. Program and job structure, register-to-reglater and memory reference instruction. Branching and loop control character manipulation, the program status word. Program debugging and testing. Subroutines, bit manipulations, data forms and conversions, input/ output programming. Prerequisite: CS 100 or CS 111.

CS 206 Complers
 3.0:3

Grammars, lexical analyais, parsing algorithms, intermediate languages and global optimization techniques, storage assigrment, push-down stacks and run-time organization. Alarge programming project is required. Prerequisites: CS 204 and CS 205.

CS211 COBOL Programming 3y 3 Computing ualng ANSI-COBOL for simple and complex business problems. Structured programming used throughout. Creating, use and updating sequentlat, Indexed and relative data files on magnetic tapes and disks. Report wrher and table handling modules in COBOL. Batch processing and time sharing processing. Prerequlsite: CS 100 or CS 101 or CS 111.

CS 217 Information Organization and Rotrieval* 3:0:3 Characteristics of information systems. Techniques of informetion retrieval. Fils organization and search strategies. Automatic text-processing methods, editing and output of textuai information. Statistical end syntactic language analysia methods. Exampies and evaluation of information retrieval and dissemination systems. Prerequisite: CS 204.

CS 238 Switching Circuits and Digital Systems 300:3 Introduction to concepts of switching theory and digital systems. Number representations, arithmetic operations, coding. Boolean algebra, combinational clrcuita, logical design, sequentlai machines, state diagrems, clock mode and pulee mode systems, etate reduction, machine syntheels. Prerequisite: CS 100 or CS 101 or CS 111.

CS237 introduction to Computer Archliectura $\quad 300: 3$ Computer organization, arithmetic and logical operations, fixed and floating point systems. Reglsters, logical modules, memorles, input/output devices. Introduction to a hardware specification language. Analysla of a complete digital computer employing hardwired and microprogrammed control. PTerequisite: CS 236 .

CS238 Computer Syatems
3303
Introduction to operating systems, memory management techniques, paging, virtual memory. Multiprogramming and time sharing systems. Concurfency, interactive and real-time systems. Interrupte, file structures, and introduction to data besses; overview of practical eystems for small and large machinee. Prerequisites: CS 204, CS 205 and CS 237.

CS240 Eiectronic Music Compostion* 23-3
Analysis of representative works of electronic mualc from
musical and technical viewpoints. Notational systems. Physics of tone production. Techniques of sound recording, tape ediling and electronic sound synthesis by analog and digital means. Creation of original composition. Enroliment limited. Prerequisite: interest in music.

CS 297 Computer Laboratory 1

1:3:2
A series of required experiments provides an fintroduction to smatl computers: digital and analog circuit techniques, smalt computer assembly language programming, minicomputer and microcomputer organization and operations. Lab fee required. Prerequisite: CS 237.

CS299 Computer Laboratory II

1:3:2
An introduction to the use of small computers as systems components: interfupt programming concepts, analog signai interfacing and real time, closed-loop systems. Independent learning and hands-on experience with different small computers are provided by projects involving such subjects as computer graphics, light intensity control and motor speed control. Lab tee requited. Prerequisites: CS 237 and CS 297.

CS 397 Senior Seminar and Project in Computer Science

20:2
Topics of general interest prepared, reported and discussed by faculty and students. Project proposals prepared and presented by students. Prerequisites: CS 206 and CS 297.

CS 398 Senior Project In Computer Seience
Term project. Several students work as group with staff member and graduate students on topic of interest. Written report and presentation required. Prerequisites: CS 397 and CS 299 or EE 189.

ORIENTATION COURSES

The graduate courses listed in this section were formulated to accommodate the needs of students who wish to pursue graduate studies in computer science, but who lack sufficient undergraduate preparation. No credit will be allowed for any of these courses toward graduate degrees in computer science, information systems or other degree programs administered by the Department of Electrical Engineering and Computer Science. Submission of substantial computer programming assignments is required in all these courses except CS 560 .

CS530 Introduction to Computer Selence
21/2:0:3
Concentrated orientation course for students interested in pursuing graduate work in computer science. Types of languages, problem-solving, algorithms, fiow charts. Besic PLt instructions, programs, programming style, structured programming. Character and bit strings, arrays, buflt-in functions, function and subroutine procedures. Assigned problems. Prerequisite: graduate status.

CS540 Eiements of Data Structures
$21 / 20: 3$
Concentrated orientation course for students entering computer science from another field. Internal representation of the stack, queue, list and their applications. Trees and Graphs. Recursive programming techniques. Internal searching and sorting. Prerequisite: CS 530.

CS550 Assembly Language Programming 21/2:0:3 Machine and assembly language instructions. Arithmetic and logical operations. The condition code and branch instructions. Subroutines linkages and the passing of parameters. Relationshigs with higher level tanguages. Applications. Prerequisite: CS 530 .

CS 580 Introduction to Logle and Automata $\quad 21_{2}: 0: 3$ Automata and switching theory. Boolean algebra, truth tables, predicate calculus. State and Venn diagrams. Deterministic and nondeterministic finite state automata. Regular sets. Introduction to Turing machines. Prerequisite: CS 530.

CS 570 Fundamentals of Computer Sclence
$21 / 2003$
Concentrated orientation course for students entering computer science from other fields. Machine and assembly language. Organization and representation of data. Stacks, queues, lists and trees. Applications. Prerequisite: CS 530 . (Offered only in 1981.)

GRADUATE COURSES

Graduate courses in computer science are offered on each campus on a regular basis, annually, or in twoyear or three-year cycles. Consult the Graduate Student Manual for these scheduling cycles as well as for information about day offerings and about the summer program. The Computer Science Graduate Mailing, sent out to continuing students prior to each registration, contains the latest information on Selected Topics course offerings, curriculum and course revisions.

CS531 Introduction to Dlgital Computing

21/2:0:3
First course in computing, concentrating on analysis of problerns for computer solution. Organization of computers. Structure and properties of algorithms and programs, flow charting. Debugging and verification, documentation, data representation, numerical error analysis. FORTRAN IV language used. Prerequisite: Graduate status. No credit will be allowed for CS 531 toward graduate degree in computer science, information systems or other degree programs administered by the Department of Electrical Engineering and Computer Seience.

Aso listed under IE 601 and OR 601

CS 603 Information Structures and Algorthms 21/2:C:3

 Organization and processing of various types of information. Imerative and recursive programming techniques. Information structures, linear lists, trees, multi-linked structures. Dynamic storage allocation, garbage collection, hashing, searching and sorling techniques. Prerequisite: CS 204 or CS 540.
CS 608 Sottwart Engineoring
 $21 / 20: 3$

Software deveiopment, modeling tools. Techniques: design estimation, testing, reliability, management. Design and analysis: top down, modular structured, HIPO diagrams, causeeffect graphs. Probabilistic models: complexity, number of errors, reliability, availability. Testing: modular, integration, paths, exhaustive, regression. Management: costs, productivity, controls. Prerequisites: MA 223 and one of the foftowing: CS 603, CS 623, CS 641.

CS 608 Data-Base Management Systems

21/2:0:3
The effective management and utilization of data. Objectives of DBMS, data independence, integrity, security. Organization and access techniques, architecture, data definition and manipulation languages. Data models, hierarchical, network, relational. Practical applications of state-of-the art techniques, foundations and underlying theories. Prerequisite: CS 603.

CS 609 information and Analysis and

 System Designl21/200:3 Introduction to the system life cycle of a computer information system. System life cycle management. Basic analysis tools, determining system economics. Logical system design. Introduction to physical system design. Prerequisfte: $C S 530$.

CS 810 Information Analysis and

 Syatem Designil21/2:0:3
Basic design tools and oblectives. Hardware/software selection and evaluation. Software design and software engineering. Data-base development. Program development. System development. Post-implementation analysis. Prerequisite: CS 609.

CS813 Computer Architecture I

21/2:0:3
Introduction to digital computer organization and architecture. Arithmetic operations; adders, accumulators, multipliers, dividers; organization and control of computer, mintcomputer erchitectute; machine languages and systems principles (knowledge of a programming language requifed). Prerequtsifes: CS 550 and CS 560; CS 237 recommended.

CS 814 Computer Architecture II 21/2:0:3

Further development of topics in machine organization and architecture. Microprogramming and microprocessors, hardwaresoftware tradeoffs, parallel computers and distributed processing, stack computers, overlep and pipeline processing, array processors, computer networks. Prerequisite: CS 613.

CS 616 Microprocessors
 21/2:0:3

Block diagramdescription of the architecture of a typical microprocessor. Registers and ALU of the CPU. Intertacing components, bus structure, Input/output techniques, priority interrupt schemes. Program techriques. Prerequisites: CS 237 or CS 613, and CS 205 or CS 550.

CSE23 Operating Systoms 1

21/2:0:3
Introduction to the structure of multiprogramming computer operating systems. Memory hlerarchies, memory management, static and dynamic including paging and segmentation, concurrency, sharing and synchronization. Prerequisites: CS 540 and CS 550; CS 237 or CS 613 are strongly recommended.

CS624 Operating Systerns II
21/2:0:3
Continuation of CS 623. Overall organization of multiprogramming operating eystems, processor and management (schedufing), deadlock detentlon end avoidance, file system management. Prerequisite: CS 623.

CS 833 Information Retrieval and Naturai Language Processing*

21/2:0:3
Cheracteristlcs of information retrieval systems. Search strategles, file organization, genaralized data-base design. Autometic text processing methoda. Autometic dictionary and thesaurue conatruction. Statlstical and syntactic language analysis, automatic content analysis. Automatic information disseminetion systerns. Automatic question-answering systems. Examples and evaluation of information retrieval systems. Prerequisite: CS 603.

CS 635 Princlples of Data Communication

 Notworks21/20:3
An introductory course in data communicationa and computer communication networks. Many examples of networks, modelIng. Beatc principies of the design and performance analysis of networks. Data communication hardware: terminsis, modems, multiplexers, concentrators, communications media. Nodal processor and host processor architecture. Software conslderattone and design. Protocols. Line control, polling and random access methode. Satellite and paciket radio networks. Reliabillty. Regulatory traffic. Interconnection of networks. Course will provide a broad overview of current iseces on networks. An assessment of atate-of-the-art technique and e glimpse at emerging quastions. Prerequisite: graduate status.

Also liated under EL 835

CS63 Prograrnming Languages
21/20:3
Introduction to the structure of programming languages. Comparison of list processing, string manipulation and general pur-
pose languages. Formal specification of syntax and semantics. Programming probiems in different languages. Prerequisites: CS 540 and CS 550.

CS 841 Compller Design and Conatruction 1 21/20:3

Organization of complier, including lexical analysis, symbol table organization, linear and two-dimenslonal source text reconstruction, syntax analysia, object code generation, Introduction to code optimization techniques. Internal representations of parsed source program, Polish notation, triples, trees. Translation of arithmetic expressions and simple etatements. Prerequisites: CS 540, CS 550, CS 560.

CSB42 Compiler Deakgn and Construction II
21/20:3
Further consideration of code optimizetion techniques. Formal languages and grammars. Introduction to transiator systems. Prerequisite: CS 641 .

CS 651 Computer Graphles and Image

 Proceseing*21/2:0:3
Problems in computer graphics. Display components and elgorithms, data structures, classical graphics, Image detection, processing techniques. Prerequisite: CS 613.
CS653 Interactive Computer Graphics*
21/2:0:3
Analysis and synthesis of graphical information. Dlecússlon of display devices, graphical data structures, graphic languages, transformatione. Interactlve techniques, characteriatica of interactive Input devices, light pen, tablets, scanners. Computer manipulation of two-dimensional forme. Three-dimert aional graphics, hidden lines and burfaces, perspective, shading. Prerequisltes: CS 603 and CS 613 .

CS 861 Artifleial Inteligence 1^{*}
21/2:0:3
Automation of intellectual processes. Nature of machine Inteiligence and its limitations. Deacription of cognitive processes. Heuristic vs. algorithmic methods of problem solution. Gameplaying programs. Formula manipulation, symbolle integration, automation of programming. General problemsolvers. Introduction to pattern recogntion and pictureprocesaing. Prerequlsites: CS 540 and $\operatorname{CS} 560$.

CS 862 Artifictal Intelligence il*

21/2:0:3
Further study of automation of intellectual processes. Automatic theorem-proving. Semantic information processlng and question answering programs. Simulation of verbal teaming behavior. Learning machines, edaptive systems, robots, decision-making problems. Practical techniques and adequacy of existing theoretical treatments. Prerequisite: CS 661.

CS 683 Artificial Intelligence and

 Pattem Recognition*21/2:0.3
Heuristic programming, problem-solving, representation, simulation of cognitive processes, self-organizing machines, neural nets, perceptions, learning devices, classlfication techniques. Prerequisite: graduate atatue.

CS674 Switching and Automatal
21/2:0:3
Analysis and synthesis of combinational and sequential switching clrcults. Boolean algebras, switching functions, minimization, single and multiple output networke, realization of functions. Finite-state sequential machines, state-transition diagrams, machine and state equivalence, incompletely specified machines, state reduction, machine realizations. Prerequjsite: graduate status.

CS 872 Switching and Automata II
21/2:0:3
Further development of theory of finitestate machines. State assignments, partitions with substifution property and parttion pairs, machine decompositions, shift-register realizations, regular expressions, Itnear machines, information losslessness, diagnosing and homing experiments, machine identification end testing. Prerequisite: CS 671.

CS 673 Formal Languages and

 Automata Theory$21 / 2003$
Introduction to generative grammars, characteristics of regular, context-free, context-sensitive and type-zero grammars. Reiationships between languages and machines. Finite-state machines, push-down automata, Turing machines. The halting problem, solvable and unsolvable linguistic question. Prerequisite: CS 671 .

CS 675 Theory of Computation
 21/2:0:3

Aspects of mathematical logic with emphasis on applications to computing machines. The Resolution Principle as applied to propositional and first order logic. Theorem proving. Correctness of programs. Applications to computer architecture, algorithms, compilers, languages. Measures of program complexity. Prerequisite: graduate status. Mathematical maturity but no specia! knowledge of set theory.

CS 907.912 Selected Toplcs in
 Computer Sclence

sach $21 / 2 . t$:3 Topics of current interest in computer science. Recent offeringe include software reliability, microprocessors, data-base management systems, computer architecture. Specific topics announced in advance. (See computer science graduate mailing for detailed description of each particular offering.) Prerequisite: specified when offered.
Courses in Selected Toplcs bearing the same numbers may be repeated for credit provided the toples are different, subject to adviser's approval.
CS 935 Computer Sclence Projects Related To Public Administration*
each 3 unlts See Polytechnic's Cooperative Program with New York University's Graduate School of Public Administration for details.

CS 941-942 Readings in Computer

 Science l, Iteach $21 / 2,10,3$
Intended primarily for students who wish to study in a specialized area under the supervision of a faculty member. Courses are open only in unusual cases to outstanding students who have completed at least 30 credits of graduate study and who are available for weekly consultation with an adviser. An examination or term report is required. Prerequisite: degree status and permission of director of division.

CS 996 Advanced Projects in

 Computer Science21/2:0:3
This course permits the student to perform research in computer science somewhat less in scope than a master's thesis. The acceptance of a student by a faculty adviser is required before registration. An oral examination on the project report is required. Prerequisite: degree status.

CS 997 Thesis for Degree of Master

 of Sclenceeach 3 unlts Exceptional students may elect to write a master's thesis for which no more than 6 units towerd the degree may be eamed. Such research should adequately demonstrate the student'g proficiency in the subject material. Oral thesis defense with at least three professors in attendance, plus a formal, bound thesis volume are required. Thesis registration must be continuous. Prerequisite: degree status and satisfactory grades in pre scribed courses.
CS 998 Dasertation for Degree of Doctor of Philcosophy
sach 3 units
Original investigation of computer science problem. Must demonstrate creativity and Include features of originality and utility worthy of publication in recognized journal. Candidate must successfully defend dissertation orally. Registration of 24 units required (continuous dissertation registration required). Prerequisite: degree candidacy, passing of qualifying examination and approval of the computer science graduate adviser.

FACULTY

Edward J. Smlth, Professor of Electrical Engineering and Director of Division of Computer Science B.E.E., Cooper Union; M.E.E., D.E.E., Polytechnic institute of Brooklyn Computer organization, switching and automata

Bruce L Hicks, Visiting Professor of Computer Science
B.S., M.S., Ph.D. (Physics), California Institute of Technology
Educational applications of computers, computer graphics

Melvin Kierer, Professor of Computer Science
B.A., M.S., Ph.D., New York University

Programming systems, languages, artificial
intelligence
Arthur E Laemmel, Professor of Electrical Engineering B.E.E., Polytechnic Institute of Brooklyn Computer architecture, coding

Stanley Preiser, Professor of Mathematics and Dean of Westchester Center
B.S., CCNY; M.S., Ph.D., New York University

Numerical analysis, applied mathematics, algorithms, system performance evaluation

Martin L Shooman, Professor of Electrical Engineering and Computer Science
S.B., S.M., Massachusetts Institute of Technology; D.E.E., Polytechnic Institute of Brooklyn

Software engineering, system reliability and safery
Ronald J. Juels, Visiting Associate Professor of Computer Science
B.E.E., M.E.E., Polytechnic Institute of Brooklyn; D.Sc., Stevens Institute

Computer architecture, microprocessor systems
Aaron Kershenbaum, Associate Professor of Computer Science
B.S., M.S., Polytechnic Institute of Brooklyn; Ph.D., Polytechnic Institute of New York Computer communicatlons, algorithms

Henry Ruston, Associate Professor of Electrical Engineering and Computer Science
B.S.E. (Math), B.S.E. (EE), Ph.D., University of Michigan; M.S., Columbia University Software engineering, programming, circuit theory
A. David Klappholz, Assistant Professor of Computer Science
B.S., Massachusetts Institute of Technology;
M.S.E., Ph.D., University of Pennsylvania

Parallel processing, computer architecture
Jamshed H. Mirza, Assistant Professor of Computer Science
B. Tech., Indian Institute of Technology, (Khoragpur, India); M.S., Ph.D., Polytectnic Institute of New York Computer architecture, pipeline processing

Norman Rubln, Assistant Professor of Computer Science
 B.S., CCNY; M.A., Ph.D., New York University Artificial intelligence, programming languages, compilers

ADJUNCT FACULTY

Michael Adamowicz, Adjunct Professor B.A., B.E., M.E., Ph.D., New York University

Barry V. Gordon, Adjunct Professor
B.E.E., M.E.E., New York University

Fred Grossman, Adjunct Professor
B.S., Polytechnic Institute of Brooklyn; M.S., Ph.D., New York University

Nareah N. Gupta, Adjunct Professor
B.S., Panjab University; B.S., Indlan Institute of Science; M.S., University of Ottawa; Ph.D., Polytechnic Institute of Brooklyn
John P. O'Donohue, Adjunct Professor
B.E.E., Polytechnic Institute of Brooklyn; M.S., Union College

Thomas W. Parsons, Adjunct Protessor B.A., B.S., University of Wisconsin; M.S., Columbia University; Ph.D., Polytechnic Institute of New York
Robert L. Schoenfeld, Adjunct Professor
B.A., New York University; B.S., Columbia University; M.E.E., D.E.E., Polytechnic institute of Brooklyn

Joel B. Snyder, Industry Professor
B.E.E., M.E.E., Polytechnic Institute of Brooklyn
M. Wayne Wilson, Industry Professor
B.A., M.A., University of Western Ontario; Ph.D., Brown University
John H. Chang, Adjunct Associate Professor B.S., National Taiwan University; Ph.D., Yale University

Davld R. Doucette, Adjunct Associate Professor B.S., M.S., Ph.D., Polytechnic Institute of Brooklyn

Robert Flynn, Adjunct Associate Professor
B.S., Manhattan College; M.S., Ph.D., Polytechnic Institute of Brooklyn
Edward J. Lancevich, Adjunct Associate Professor B.S., CCNY; M.S., Columbia University; Ph.D., Polytechnic Institute of Now York

Dimitri Protopapas, Adjunct Associate Protessor B.Sc., University of Athens; M.S.E.E., University of Toronto: Ph.D., Polytechnic Institute of New York
Arthur Appel, Lecturer
B.M.E., M.M.E., Clty College of New York

Shakuntala Atre, Lecturer
M.Sc., Universlty of Poona (India); Dipl., University of Heidelberg (Germany)
Kenneth R. Aupperle, Lecturer
B.S., M.S., Polytechnic Institute of New York

Charles J. Bontempa, Lecturer
B.A., M.S., University of Maryland

Peter G. Capek, Lecturer

Roy S. Freedman, Lecturer
B.S., M.S. (Math), M.S. (E.E.), Ph.D., Polytechnic Institute of New York

Harry Goldberg, Lecturer
B.A., Queens College; M.S., Polytechnic Institute of New York

Danlel J. Gormañ, Lecturer
B.S., University of Massachusetts (Amherst);
M.S., Columbia University

Ronald B. Greenwald, Lecturer
B.E., Pratt Institute; M.S., Columbia University

Frank M. Gruppuso, Lecturer
B.S., M.S., Polytechnic Institute of Brooklyn

Cartion B. Hensiey, Lecturer
B.A., Oberlin College; M.S., Carnegie-Mellon University

Robert Hong, Lecturer
B.S., (I.E.) Columbia University; B.S. (E.E.), Cooper Union

David Jacobson, Lecturer
B.A., Ph.D., Yeshiva University

Lawrence L. Leff, Lecturer
B.S., Polytechnic Institute of New York

Leonard Librizi, Lecturer
B.E.E., CCNY; M.E.E., Polytechnic Institute of Brooklyn; M.S., Polytechnic Institute of New York

Howard W. Loewenstein, Lecturer
B.C.E., CCNY; M.S., Polytechnic Institute of Brooklyn

Marsha Moroh, Lecturer
B.S., Dickinson College; M.S., New York University;

Ph.D., Polytechnic Institute of New York
Robert O'Hara, Lecturer
B.A., Pennsylvanla State University;
M.S., Union College

Richard M. Rosenberg, Lecturer
B.E., Cooper Union; M.S., Ph.D., New York University

Mark Seiden, Lecturer
A.B., Columbia University

Martin V. Sternberg, Lecturer
B.S., M.S., Polytechnic Institute of New York

Fred J. Straues, Lecturer
A.A.S., Queensborough Community College; B.S.E., Arizona State University; M.S., Polytechnic Institute of Now York
Mehmat Ulema, Lecturer
B.S., M.S. (M.E.), Technical University of Istanbui; M.S.
(C.S.), Ph.D., Polytechnic Institute of New York

Walter Vasilaky, Lecturer
B.A., Rutgers University; M.A., University of Maryland; Ph.D., New York University
J. Douglas Wright, Lecturer
S.B., Massachusetts Institute of Technology

COOPERATIVE EDUCATION PROGRAM

The Cooperative Education Program provides students with practical work experience in industry, government and public service agencies.

Co-op is normally a five year undergraduate program which enables a student to combine the required number of classroom credits with approximately 20-24 months of work experience. The first and fifth years are spent on the campus in the conventional September to May study schedule, while the middle years, including summers, are devoted to alternating periods of training in industry, and study on the campus.

For graduate students and undergraduate transfer students, the length of the program and sequence of alternation will be determined through faculty recommendation.

Students who are accepted in the program will start interviewing with participating Co-op companies during the semester prior to their first scheduled work experience. The Cooperative Education Office will be responsible for setting up the interviews. In most cases, the company interview will determine whether the student is hired as a Co-op employee.

Once on-the-job, the Co-op student employee will be paid a salary and, in most cases, receive company benefits. The student will be given work that is directly related to the student's career goals and level of academic experience.

ELIGIBILITY

The Cooperative Education Program is available to undergraduate students who have: 1) completed at least 30 credits of academic work with no course deficiencies; 2) maintained at least a 2.5 cumulative average; 3) successfully completed the Cooperative Education Seminars CP 101-102. Freshmen would be eligible for their first work experience during the summer following the completion of the first academic year. Second semester juniors and seniors are not eligible for the program. Graduate students and transfer students are eligible, usually after completion of one semester.

UNDERGRADUATE AND GRADUATE REGISTRATION

The Cooperative Education Program is designed to meet the professional training needs of students as they progress through their academic program. Within
the Co-op Program there are two special programs: Women's Late Entry for those mature women who wish to pursue a career in engineering or science and the Cooperative Education Minority Scholars Program for black, Spanish-speaking and native Americans.

Regarded as a professional practice period, the Co-3p courses are non-credit but will be recorded on the official transcript as either S or U on a non-credit basis. The grade of "satisfactory" or "unsatisfactory" will be based on the employer evaluation of the student and the cooperative education coordinator evaluation. The transcript notation will include the Co-op course number, the employer name and the functional department to which the student is assigned.

A $\$ 25.00$ registration fee is charged for each work period.

The Cooperative Education courses are assigned to each student in sequence, starting with Co-op 10 to Co-op 14 by the Cooperative Education Office.

The level of the Co-op course number is used as an administrative device to keep track of the actual number of work assignments completed by each student. A student entering into an industrial assignment after the freshman year will normally complete five work periods-Co-op 10 through Co-op 14, while a student entering after the sophomore year might be eligible to complete only two work periods, Co-op 10 and Co-op 11. The Co-op course number does not indicate the type of work, level of difficulty or responsibility of the actual work assignment, which may vary, depending on the company's product or service, and the student's ability and interest. Some firms may assign a student according to current work-load and the student's level of experience and/or academic standing. Others have a formalized training program that all students are required to complete. A typical formalized training program might contain the following assignments:

Co-op 10-Shop on laboratory indoctrination. Rotating assignments to give the future engineer or scientist a working knowledge of production methods.

Coop 11-Quality control or data acquisition. Working directly with a senior technician or engineer.

Coop 12-Production engineering or testing. At this point the student is usually given a task for which he or she is totally responsible under the supervision of a senior engineer or scientist.

Coop 13-Research or design. The student is exposed to engineering or scientific methods relating to the state of the art.

Coop 14-Usually the student's choice.

UNDERGRADUATE COURSES

CP 101 Cooperative Education Seminar $1^{\mathrm{a}, \mathrm{b}} \quad$ 1:0:N.C.
The development and practice of pre-employment skills to specifically prepare students for thetr first and succeeding ccoperative education work perlods with industry and government. Methods of discovering fields in which individuals should find the greatest rewards in personal satisfaction and material gain, the techniques of resume writing and interviewing, adjusting of attitudes to adapt to varying conditions, making contacts with prospective employers, planning for advancement and other problems bridging the gap between education and work will be examined. Seminar will be conducted by the Coop staff, faculty and guest lecturers from industry.

CP 102 Cooperative Education Seminar II ${ }^{\mathrm{a}, \mathrm{b}} \quad$ 1:0:N.C. The development and practice of skills in oral and written presentation in order to help the prospective Coop students meet the demand of employers while on their work perlods. The rudiments of technical report writing and public speaking will be expiored.

COORDINATORS

Emest B. Racz, Director of Cooperative Education and Career Services
B.A., Franklin \& Marshall College; M. Div., Lancaster

Theological Seminary; M.A., Ed.D., Columbia University
Irene H. Dorłback, Assistant Director
B.A., University of Kentucky; M.A., University of Michigan

Russell P. Reeder, Coordinator, Farmingdale Campus A.A., Orange County Community College; B.A., SUNY (Richmond College); M.A., Columbia University

Sandra P. Santana, Coordinator, Cooperative Education
B.A., Fordham University
a Completion of CP 101 and 102 required for all freshmen and sophomore applicants to the Ccoperative Education Program prior to the first work assignment. Transfer or upper division students, who meet eligibility requirements, must complete CP 101 or 102 prior to the first work assignment.

[^6]
ELECTRICAL ENGINEERING

The Department of Electrical Engineering and Computer Science administers a variety of degree programs, summarized in the table below. This section of the catalog specifically describes the programs and courses in electrical engineering. Programs and courses in computer science and the graduate program in information systems are described in the computer science section of the catalog, page 81 . The graduate programs in electrophysics and in system engineering are described in the appropriate catalog sections, page 112 and 247 respectively; however, the courses for these two programs (except for thesis) are located in the electrical engineering section.

The Electrical Engineering Profession-Electrical engineering is a rapidly growing profession which has evolved from its early beginnings in electrical power generation and distribution through the development of radio to television and computers. More recently the profession has contributed to man's pleasure, safety and health with automatic systems and devices used daily in medical and health care, high-speed transportation and satelite communication.

While the undergraduate and graduate programs in electrical engineering are designed primarily to develop talents in the areas mentioned above, graduates eventually apply their training to such diversified fields as bicengineering, city planning, astronautics, radio astronomy, system engineering, management and patent law. As students mature and realize their abilities, their protessional lives may center on engineering, government, sales or education.

The electrical engineering facuity at Polytechnic covers a wide range of fields of specialization. Principal areas of teaching and research are electronic devices and systems, quantum electronics and material science, electro-optics and electro-acoustics, microwave engineering, power systems and energy conversion, plasma science, information and communtcations science, system and control engineering, computer engineering and computer science.

UNDERGRADUATE PROGRAM

The program for the degree of bachelor of science in electrical engineering gives the student a broad-based preparation for a career in electrical engineering in any of its specializations, preparing him or her for immediate employment in industry or government, or for further graduate education. The department offers a standard program, as well as four specialized options: computer engineering, power engineering, electrophysics and bioengineering. The first two years of all programs are essentially the same. In the standard
program, upperclassmen are able to sample several different areas through their choice of elective courses. The four options represent modified courses of study constructed for those juniors and seniors who desire to concentrate on some areas in greater detail.

All of Polytechnic's electrical engineering undergraduate programs, on both campuses, day and evening, standard program as well as options, are accredited by the Accreditation Board of Engineering and Technology (ABET) (formerly called Engineers' Council for Professional Development, ECPD), on which the Institute of Electrical and Electronics Engineers (IEEE) is a participant.

UNDERGRADUATE OPTIONS

Programs in Computers - The programs in computers are designed to provide the student with a broad, basic preparation in the theory, organization and application of computers and information processing systems. The student interested in computers may choose either one of the following programs: $\{a\rangle$ the computer engineering option, leading to the bachelor of science in electrical engineering, or (b) the computer science program, leading to the bachelor of science in computer science (see page 82). Both programs draw from

Degree Programs Administered by the Department of Electrical Engineering

UNDERGRADUATE

Electrical Engineering
Bachelor of Science
Options: Standard Program Bioengineering Computer Engineering Electrophysics Power Engineering

Computer Science
Bachetor of Science
GRADUATE

Electrical Engineering	Electrophysics
Master of Science	Master of Science
Electrical Engineer	Doctor of Philiosophy
Doctor of Philosophy	Computer Science
	Master of Science
System Engineering	Doctor of Philosophy
Master of Science	Information Systems
System Engineer	
Doctor of Philosophy	Master of Science

the same core curriculum of computer courses and both require that the student take a balanced selection of software (programming languages, etc.) and hardware (computer architecture, minicomputer laboratory, etc.) courses; both programs also require the same mathematics, physics and chemistry courses. The computer engineering option offers the engineeringoriented student the opportunity of obtaining the bachelor of sclence in eiectrical engineering while simultaneously acquiring a thorough grounding in the basics of computers. Beginning in the fifth semester, the computer engineering option contains a required sequence of integrated course offerings, which covers such areas as switching circuits and digital computer organization, machine and assembly language programming, and two digital laboratory courses with hands-on minicomputer and microcomputer experience. The program is completed in the senior year by an appropriate selection of computer or computerrelated elective courses, including programming language translators, computer systems and an optional senior project.

Power Engineering Option-The power option is interided to provide the student with workable knowledge of the field in line with the needs of today's electric power industry. The intention is not to provide strong apecialization, but rather to give focus to the student's studies. The knowledge acquired will enable the graduate to understand the physical reasons of why an electrical machine functions, and to analyze its extarnal characteristics as a system unlt. Other topics covered are transmission and distribution of electric power, design and analysis of fault prevention, and safety measures. The background thus acquired will give the student a head start in all branches of the electric power industry.

Electrophysles Option-The electrophysics option is intended for the eiectrical enginearing student whose interests lie in the broad areas of electromagnetic and solid-state devices, as opposed to circults, systems, computers or power. A variety of senior elective courses cover the principies that underlie the hardware of electrical engineering and the influence of these principles on device design. This option prepares a student for work in such areas as antennas and microwave components, such as are found in radio and radar systems; lasers and optical components, such as are used in optical communicstions; and integrated circuits, parametric amplifiers, Gunn oschllators, etc., which are the elements used to generate and process electric signals.

Combined Electrical Engineering and Life Scienceas Programs-Students interested in combining a career in the Hfe sciences with electrical engineering have a choice of two programs: (a) the bioengineering option, leading to the bachelor of science in electrical engineering with an optional fifth year leading to the master of science in bioengineering and (b) the electrical engineering option leading to the bachelor of science in life science, with an optional fifth year leading to the master of science in electrical engineering. See page 153.

The bioengineering option includes all the requirements of the standard B.S. in electrical engineering program. The specialized coursea in the optlon, taken in lieu of electrical engineering electives, give the student a background in blology, chemiatry and physiology. The program enables the student to become an engineering member of medical and hospital teams, to work in areas such as prosthesis design, medical instrumentation, and medical data analysis, or to continue with graduate study in bioengineering.

The electrical engineering option for the life sciences degree incorporates a majority of the sophomore and junior-level electrical engineering courses. Completion of the courses in the electrical engineering minor with a minimum 2.7 grade-point average guarantees admission Into the M.S. in electrical engineering program without undergraduate deficlencies. Consult the life sciences sectton of the catalog for details of the bachelor's curticulum and the graduate electrical engtneering section for details on the master's program.

Evening Undergraduate Program-The bachelor of science in electrlcal engineering degree can alao be earned in an evening program. The Polytechnic institute of New York is unique among englneering colleges in that it offers identical programs and diplomas to day and evening students. Classification as day or evening student is purely administrative, not curricufar. Day and evening sectlons of a course have identical content. Full-time day students and part-time evening students are likely to attend the same evening classes, and they are subject to the same academic standards. Transfer between day and evening status is possible at any time.
Since the needs of evening students vary, a prescribed sequence of courses is not possible. Consequently each individual student should consult with the evening adviser in person or by telephone.

Tranter Students-Qualified graduates of two-year preengineering programs, such as those given at liberal arts colleges and community colleges, may fulfill the requirements for the B.S. in eiectrical engineering in two additional yaars. Since pre-engineering programs very, a prescribed program is not possible; consequently, the student should consult with an undergraduate adviser.

Graduates of technology programs may be able to furfill the requirements for the B.S. in eiectrical englneering in two to three-and-one-half years, depending on the scope and level of their previous education. Consult with an undergraduate adviser for detalls.

Transfer credits granted for graduates of programs at other schools are subject to frequent changes, based on reevaluation of content and level. Thus students completing the same program, but in different years, may receive different amounts of transfer credit. Consult the electrical engineering undergraduate adviser for current information.

Transfer students must arrive and present their records for evaluation at least one week before the regufar registration period for their first semester at Polytechnic.

Program Availability

Brooklyn: All of the above described programs are available to day students. Evening students should plan to follow the standard program, because not all courses required for the four specialized options are offered in the evening session.

Long island: The standard program as well as the computer engineering and electrophysics options can be completed on the Long lsiand campus. The principal specialized courses for the power engineering and bioengineering options are not offered on Long island in 1981-83. Evening course sections are offered occasionally, usuaily in the spring and summer semesters, as make-up or catch-up courses for transfer students and others with irregular programs.

Senior Honors Students-m A full-time day student whose performance in the first three years is outstanding will be named as a senior honors student and is permitted to replace some of the required senior technical courses with other courses, usually more advanced, which are directed to the student's professional goals.

Graduate courses (non-daggered) may be taken as electives by senior students whose iunior year gradepoint average in technical courses exceeds 2.7. Daggered electrical engineering graduate courses may be taken as senior electives by any undergraduate.

Departmental Standards and Probation-To earn a degree in the Department of Electrical Engineering, students must earn a minimum C average (2.0 grade-point average) in all technical courses: mathematics, physics, computers and engineering.

Students are automatically placed on departmental probation if their semester or cumulative technical average is less than 2.0 , if they receive C - or less in any sophomore year electrical engineering course, or if they fail to adhere to course prerequisites. Students on probation must consult with their advisers during the registration week prior to the beginning of each term. They may be required to repeat courses in which they have earned grades of C- or less or an incomplete, to postpone an advanced course, to take a special program of courses to improve their understanding or to withdraw from the department in cases of repeated departmental probation. Almost without exception, students earning a D + or less in EE 101 or EE 102 will be required to repeat the course. Likewise, a student who earns a combined average of \mathbf{C} - or less in all technical courses during one semester, or in a closely related sequence of courses, will almost invariably be required to repeat some of these courses.

Information-The Undergraduate Student Manual, issued to every student, contains further details on courses approved as electives, new courses, special sections and other matters of interest. Last-minute announcements are posted on the bulletin boards outside of the undergraduate office in Brookiyn and the department office in Farmingdale. Each student is responsible for keeping informed.

GRADUATE STUDY

The Department of Electrical Engineering and Computer Science offers graduate programs leading to the degrees of master of science, engineer and doctor of phitosophy in the areas tisted in the table at the beginning of this section of the catalog. The programs leading to degrees in electrical engineering are described in the following paragraphs. Other sections of this catalog describe the programs in eiectrophysics, system engineering, and computer science.

The requirements for graduate degrees in electrical engineering are quite general. Each student may follow a program that specializes in any one of a variety of fields, including those described in the following paragraphs.

Outstanding students should apply for financial aid in the form of research fellowships, teaching fellowships or partial tuition remission.
Computer Engineering-Computer engineering deals with the design, construction and utilization of digital computers. This includes the special circuits and devices that are used in computers and the mathematical theories for their description, including switching and automata theory. Appropriate courses include those listed below under electronics and information science, as well as those listed under computer science.

Information Science-information science deals with the various communications systems such as television, voice and data transmission, radar, telemetry and space communication, facsimile and display systems, plus the modern problems associated with data analysis and communication between man and machine and between machine and machine.

Systems and Control-System engineers are concerned with modeling and predicting the behavior of large systems from a knowledge of the component parts. Examples include air-tratfic control systems, health-care delivery systems, systems to monitor and control pollution of the environment. Control engineers are concerned with all aspects of automatic regulation of system performance. Together with the system engineer, they are trained in the fields of automation and system theory. Typical examples of control systems are automatic guidance systems for aircraft and space vehicles, electric motor controi and chemical process control.

Curriculum of Study for the Bachelor of Science Degree in Electrical Engineering (for Freshmen Entering 1981)

Freshman Year

First Semester			Hours/Week	
No.	Subject	Cl.		Cr
MA 101	Calculus 1	4	0	4
PH 101	Introductory Physics !	3	0	3
CM 101	General Chemistry 1	$2^{1 / 2}$	0	$2^{1 / 2}$
CM 111	Gen. Chem. Lab	0	$11 / 2$	1/2
HU 101	College Composition ${ }^{\text {n }}$	3	0	3
SS 104	Contemporary History ${ }^{\text {h }}$	3	0	3
PE 101	Physical Educationr. ${ }^{\text {d }}$	0	2	0
				16
Sophomore Year				
EE 101	Elec. Systems I	3	0	3
EE 193	Soph. EE Lab !	0	3	1
CS 203	Computer Progr. II	3	0	3
MA 104	Appl. Diff. Equations	3	0	3
PH 103	Introductory Physics ill	$21 / 2$	$11 / 2$	3
	Hum./Soc. Sci. elective ${ }^{\text {h }}$	3	0	3
PE 103	Physical Educationt ${ }^{\text {d }}$	0	2	0
				16

Second Semester			Hours/Week	
No.	Subject	Cl.	Lab.	Cr .
CS 111	Computer Progr !	3	0	3
MA 102	Calculus It	4	-	4
PH 102	Introductory Physics II	$31 / 2$	11/2	4
CM 102	General Chemistry Ii	$21 / 2$	0	$2^{1 / 2}$
CM 112	Gen. Chem. Lab II	0	$11 / 2$	$1 / 2$
HU 200	Intro. to Literature ${ }^{\text {h }}$	3	0	3
PE 102	Physical Education ${ }^{\text {d }}$	0	2	0
				17
EE 102	Elec. Systerns If	3	0	3
EE 194	Soph. EE Lab It	0	3	1
MA 103	Calculus 11 l	3	0	3
PH 230	Atom. and Nucl. Physics	2	0	2
AM 115	Eng. Mechanics ${ }^{\text {e }}$	4	0	4
	Hum./Soc. Sci. elective ${ }^{\text {h }}$	3	0	3
PE 104	Physical Educationt ${ }^{\text {d }}$	0	2	0
				16

Junior Year First Semester		Hours/Week	
No.	Subject	Cl	Lab. Cr.
EE 103	Elec. Systems it	4	04
EE 111	Solid State Circ. 1	3	03
EE 161	Lines and Waves	4	04
EE 195	Jr. EE Lab. 1	1	32
CS 236	Switching and Dig. Sys.	3	03
	HumfSoc. Sci, elective ${ }^{\text {n }}$	3	$0 \quad 3$
			19

Senior Year				
EE 113	Solid State Circ. III	3	0	3
EE 141	Signal Processing	3	0	3
EE 180	Elec. Machinery 1			
EE 167	Quantum Electronics ${ }^{x}$ Technical elective ${ }^{t}$	6	0	6
EE 197	Sr. EE Lab 1	1	3	2
	Technical electiver, ${ }^{\text {I }}$	3	0	3

Electronics and Networks - The discipline of electronics and networks involves the design, construction and theoretical treatment of circuits used in modern electronic equipment, particularly those invoiving semiconductor devices and integrated circuits.

Fields and Waves-Studies in fields and waves inctude electromagnetic and acoustic wave radiation and propagation under a variety of conditions, including nonlinear, anisotropic and structured media. Applications to technology include waveguide structures, antennas, parametric interactions, diffraction, scattering, surface and bulk acoustic wave propagation and transduction.
Plasma and Atmospheric Physics - This area is involved with breakdown and ionization of gases and the interaction of the resultant plasma with electromagnetic waves. Such studies have application to
thermonuclear power generation, understanding solar and planetary atmospheres, and propagation of radio waves in the ionosphere.
Power Systems and Energy Conversion-Studies in power and energy inctude not only the traditionally important generation, conversion and distribution of electrical power but also such modern topics as ion plasmas and fuel cells for the generation of electrical energy and the realization of ionic propulsion for space vehicles.
Quantum Electronics and Material Science-Quantum electronics and material science deals with the interaction of electromagnetic fields and waves with matter, which can be understood only through a quantum theoretic treatment. Topics of interest include masers and lasers, nonlinear optics, quantum optics, holography, and electric, magnetic and thermal properties of materials.

BIOENGINEERING OPTION

Freshman and sophomore courses as in standard program.

Junior Year				
EE 103	Elec. Systems II	4	0	4
EE 111	Solid State Circ. 1	3	0	3
EE 161	Lines and Waves	4	0	4
EE 195	Jr. EE Lab. 1	1	3.	2
MA 223	Probability	3	0	3
	Hum.Soc. Sci. elective ${ }^{\text {n }}$	3	0	3
				19
Senior Year				
EE 113	Solid State Circ. III	3	0	3
EE 180	Elec. Machinery I			
EE 467	Quantum Electronics x Concen. elective ${ }^{\text {t }}$	6	0	6
EE 197	Sr . EE Lab I	1	3	2
CS 236	Switch. and Dig. Sys.		0	3
BE 610	Physiology for BE !	$21 / 2$	0	3

COMPUTER ENGINEERING OPTION

Freshman Year

CS 111	Computer Progr. I	3	0	3
MA 101	Calculus I	4	0	4
PH 101	Introductory Physics I	3	0	3
Cin 101	General Chemistry !	$2^{1 / 2}$	0	$21 / 2$
CM 111	Gen. Chem. Lab I	0	$11 / 2$	$3^{1 / 2}$
HU 101	Coliege Compositionh	3	0	3
PE 101	Physical Education'd	0	2	0
				16

CS 203	Computer Progr. It	3	0	3
MA 102	Calculus II	4	0	4
PH 102	Introductory Physics II	$31 / 2$	$11 / 2$	4
CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$
CM 112	General Chemisty Lab. It	0	$11 / 2$	$11 / 2$
HU 200	Intro. to Literature			
PE 102	Physical Education	3	0	3
		0	2	0

Sophomore Year

EE 101	Elec. Systems I	3	0	3
EE 193	Soph. EE Lab I	0	3	1
CS 204	Data Structures	3	0	3
MA 104	Appl. Dift. Equations	3	0	3
PH 103	Introductory Physics It	$2^{1 / 2}$	$11 / 2$	3
SS 104	Contenporary History	3	0	3
PE 103	Physical Education.d	0	2	$\underline{0}$
				16

EE 102	Elec. Systems It	3	0	3
EE 194	Soph. EE Lab II	0	3	1
MA 103	Calculus III	3	0	3
PH 230	Atom. and Nucl. Physics	2	0	2
AM 115	Eng. Mechanics	4	0	4
	Hum./Soc. Sci. elective ${ }^{\text {n }}$	3	0	3
PE 104	Physical Educationr. ${ }^{\text {d }}$	0	2	0

Junior Year

First Semester
No. Subject
EE 103 Elec. Systems Iil
EE 111 Solid State Circ. I
EE 195 Jr. EE Lab
CS 205 Ass'y and Machine Lang.
CS 236 Switching and Dig. Sys Hum.Soc. Sci. elective

	Hours/Week	
C.	Lab.	Cr.
4	0	4
3	0	3
1	3	2
3	0	3
3	0	3
3	0	3
		18

Second		Semester		Hours/Week	
No.	Subject	Cl.	Lab.	C.	
EE 104	Feedback Systems	3	0	3	
EE 112	Solid State Circ. 11	3	0	3	
EE 188	Computer Lab!	2	3	3	
CS 237	Computer Architecture	3	0	3	
	Concen. elective	3	0	3	
	Hum.ISoc. Sci. elective $^{\text {h }}$	3	0	$\frac{3}{18}$	

Senjor Year

EE 113	Solid State Circ. III	3	0	3
EE 161	Lines and Waves	4	0	4
EE 889	Computer Lab II	1	3	2
MA 223	Probability	3	0	3
	Technical electiver.t	3	0	3
	Hum./Soc. Sci. elective			
		3	0	3

EE 141	Signal Processing	3	0	3
EE 199	Sr. EE Lab II	1	3	2
	Concen. elective	3	0	3
	Concen. elective	3	0	3
	Hum. ${ }^{\prime}$ Soc. Sct.	elective		
	Free elective	3	0	3
		3	0	3
				$\underline{17}$

Total credits required for graduation: 136

[^7]
ELECTROPHYSICS OPTION

Freshman and sophomore courses as in standard program.

Junior Year

EE 103	Elec. Systems Ill	4	0	4
EE 111	Solid State Circ. I	3	0	3
EE 161	Lines and Waves	4	0	4
EE 167	Quantum Electronics	3	0	3
EE 195	Jr. EE Lab I	1	3	2
	Hum./ Soc. Sci. elective ${ }^{h}$	3	0	$\frac{3}{7}$
				19

Senior Year

EE 113	Solid State Circ. III	3	0	3
EE 180	$\left.\begin{array}{l}\text { Elec. Machinery } 1 \\ \text { Technical Elective }{ }^{t}\end{array}\right\}$	3	0	3
EE 197	Sr. EE Labl	1	3	2
CS 236	Switching and Dig. Sys.	3	0	3
	Concen. elective ${ }^{\text {t }}$	3	0	3
	Technicel electiver ${ }^{\text {r }}$	3	0	3
				17

EE 1044	Feedback Systems	3	0	3
EE 112	Solid State Circ. II	3	0	3
EE 162	Electromag. Fields	4	0	4
EE 196	Jr. EE Lab II	1	3	2
MA 223	Probability	3	0	3
	Hum./Soc. Sci. elective			
		3	0	$\frac{3}{18}$

EE 141	Signal Processing	3	0	3
EE 199	Sr. EE Lab. II	1	3	2
	Concen. elective	3	0	3
	Technical elective	3	0	3
	Hum./Soc. Sci. elective			
	Free electiver.	3	0	3
		3	0	3
				$\frac{3}{17}$

Total credits required for graduation: 136

EE 104	Feedback Systems	3	0	3
EE 112	Solid State Circ. II	3	0	3
EE 162	Electromag. Fields	4	0	4
EE 183	Power Systems	3	0	3
EE 196	Jr. EE Lab II	1	3	2
	Hum./Soc. Sci. elective ${ }^{\text {h }}$	3	0	3
				18
EE 141	Signal Processing	3	0	3
EE 181	Elec. Machinery II	3	0	3
EE 199	Elec. Mach Lab. ${ }^{2}$	1	3	2
	Technical elective ${ }^{t}$	3	0	3
	Hum/Soc. Sci. elective ${ }^{\prime}$	3	0	3
	Free electiver,t	3	0	3

Total credits required for graduation: 136
dDay students only.

- Evering students may replace AM 115 by AM 116 plus AM 117.
hThe student shall complete a minimum of 24 credits of humanities and social science courses. The student must take HU 101 and either HU 200 and SS 104 or IS 140-141. Students who are placed in HU 103 on the basis of the English Composition Placement Test administered at the Polytechnic to all Incoming students may substitute HU 103 for HU 101. Students placed in HU 008 or HU 000 must complete this noncredit writing course before taking HU 101 (or HU 103).
In addilion, the student is strongly urged to select an area of concentration (such as ilterature, communications, the arts, philosophy or corrparative rellgion in the Department of Humanitles, or poitical sclence, economics, history, anthropology or psychology in the Department of Social Sclences) and to elect two or three courses in thls concentration, in consultation with an adviser. A modern language may be chosen as a sultable concentration, but a student without prlor knowledge of the language should plan to devote at least 12 credit hours to the subject. For the remaining credits in the humanities/social science requirament, the student should select courses in areas other than that of the concentration.
'ROTC students should note that freshmen and sophomores may substitute zero-credit military science courses for PE 901 -104 (physical education); junlors and senfors may substifute three of the following twocredit courses: MS 131, 142, 143, 146, for three credits of free electives and three credits of technical electives.
tTechnical electlves are chosen from a list of approved courses, depart. mental and out-of-department, published and updated each year, Concentration electives are chosen from a restricted ilst published for each curriculum option. Any courge can be chosen as a free elective as iong as It does not duplicate materlal studied under another course number. See note z for restriction on project courses.
xChoose any two of the three courses or one of two, as ilsted.
ZStudents may replace EE 199 by Project Laboratory EE 198, or by B.S. Thesis EE 397. Not more then six credlts of prolect courges (EE 198, EE 397, EE 398, CS 398) may be offered toward the B.S. in E.E. degrae.

THE MASTER'S DEGREE

Admission to the master of science program requires a bachelor's degree in electrical engineering, from an accredited institution, with a superior undergraduate academic record.

Students not meeting all these requirements wili be considered for admission on an individual basis, and may be admitted subject to the completion of appropriate undergraduate courses to remove deficiencies in preparation. In the event that such a student also desires to obtain a Polytechnic B.S. in electrical engineering degree, he must do so first, before beginning to study for a master's degree in the Depariment of Electrical Engineering and Computer Science.

Applicants lacking an electrical engineering bachelor's degree who are otherwise sufficiently prepared for admission without undergraduate deficiencies may nevertheless be required to take specified introductory level graduate electrical engineering courses. Such graduate courses will count toward the master's degree. (This applies for example to graduates of the Polytechnic B.S. in life sciences with a concentration in electrical engineering.) Students without an electrical engineering B.S. may also want to consider the departmental master's degree programs in electrophysics, page 112, and in system engineering, page 247.

Outstanding students should apply for financial aid in the form of research fellowship, teaching fellowship or partial tuition remission.

DEGREE REOUIREMENTS

To satisfy the requirements for the M.S. in electrical engineering degree, the student must complete a total of 36 units of courses as described below, with an overall grade average of B. In addition, a 8 average is required in specific groups of courses as indicated below.

1. Core courses
Three courses from the following:
EL 531 Probability
EL. 610 Linear Systems
EL. 611 Signals, Systems and Transforms
EL 641 Advanced Electronic Circuitry I
EL 671 Fields and Waves
CS671 Switching and Automata!
2. Two one-year sequences which may include
the courses in group (1)
3. Approved electives, which may include a thesis
(9 units) and one reading course (3 units
maximum)

An overall B average is required in the combination of five to seven courses offered to satisfy categories (1) and (2) in the above table.

The core courses cover fundamental material and should be taken as early in the program as possible. A
complete program of study, including the choice of one-year sequences, is arranged with a departmental adviser. The departmental Graduate Student Manual should first be consulted for detailed rules and procedures, such as student status, recommended oneyear sequences, recommended electives, current areas of research, repetition of courses and disqualification for low grades. The manual also contains announcements of changes in degree requirements, if any, adopted by the faculty subsequent to the publication of this catalog.

Out-of-department courses fi.e. courses not carrying the departmental prefixes EL or CS): A maximum of 12 units of approved courses may be offered as electives.

Thesis: An exceptional student may elect to write a master's thesis for which 9 units toward the degree may be earned. Such a student should find an appropriate adviser who has agreed to monitor the thesis research. The research need not be original, but should adequately demonstrate the student's proficiency in the subject material. An oral defense of the master's thesis with at least three professors in attendance is required.

Transfor credits: The 9 units of transfer credits which may be allowed in accord with institute regulations on page 21 of this catalog can be applied toward the oneyear sequence requirements and toward the electives.

Energy Program: Students in the Energy Program are required to offer a more specific list of courses within the foregoing tabulation:

1. Core courses: EL 531, EL 610 or EL. 611, EL 671.
2. One-year sequences: EL 661, EL 663, EL 665, EL 666.
3. Electives:
(a) ES $927-928$ is required.
(b) 9 units from a list of specified courses.

For fuil details, consult the catalog section for the Energy Program, page 114.

THE ENGINEER DEGREE

The engineer in electrical engineering degree is offered in recognition of the need of system and component designers for advanced training beyond the master's degree. This degree program invoives additional graduate courses and a substantial design project.

A guidance committee, usually drawn from the fulltime faculty of the department, advises the student and grants final approval when the department requirements have been satisfied. The guidance committee usually consists of three members; the chairman and at least one other member shouid be from the Department of Electrical Engineering and Computer Science. Participation is encouraged by a committee member (or members) from the adjunct faculty or from another department. The committee is appointed shortly after the student is admitted to the program.

The complete program for each student is detailed following consultation between the student and the guidance committee. The minimum requirements of the program are 72 units past the bachelor's degree apportioned as follows:

1. A master's degree in electrical engineering, for which the student receives

36 units
2. An engineer project that demon-
strates mature design, engineering
economics, trade-offs, etc., for
which the student receives
3. Approved electives

The engineer project may be suggested by either the student or guidance committee and is officially approved on the student's submission of an acceptable written proposal that details the problem, background and approach, gives a budget for estimated project expenses and states the desired number of units (6,9 or 12 units) to be earned. On completion of the engineer project, the student will submit bound copies of the project report and will defend the work at an oral examination. More detailed information regarding the project and defense may be found in the Graduate Sfudent Manual.

In certain exceptional cases involving students with well-documented records of original significant analysis and design achievements, the guidance committee may waive the requirement that the analysis and design work be performed in residence. However, bound reports and an oral defense will still be required. In such cases, six units of project will be credited toward the degree.

The student shall choose elective courses with the advice and consent of the guidance committee to achieve a concentrated and well-integrated background in the chosen area. Courses outside the electrical engineering area are generally acceptable provided they build toward the student's goal. Typical areas of concentration are power, safety and reliability, electronics, systems and controls, communications, computers and electro-pptics.

DOCTORAL PROGRAM

General-Graduate students who have exhibited a high degree of scholastic proficiency and have given evidence of ability for conducting independent research may consider extending their goals toward the doctorate. The degree of Ph.D. is awarded after completing the program of study and research described below and on preparation and defense of a dissertation representing an original and significant contribution deemed worthy of publication in a recognized scientiffic or engineering journal.

Admission to Program-Entrance into a doctoral program of study and research is contingent on the candjdate's passing the departmental qualifying examina-
tions and forming a guidance committee (both described below). A student entering with a bachelor's degree will normaily take the qualifying examinations after one year of study. Entering students hoiding a master's degree may take these examinations as soon as they are prepared, but are expected to submit to examination within the calendar year.

Students entering the doctoral program at the baccalaureate level must meet the above-listed entrance requirements for the master's program. Students entering at the master's level for the Ph.D. program in electrical engineering are normally expected to have a master's in electrical engineering.

Qualitying Examinations-The Ph.D. qualitying examinations are offered once each year, generally at the opening of the academic year in September. These examinations are divided into three sections: (a) basic section - a written examination requiring a broad coverage of knowledge and problem-solving ability at the undergraduate level (b) advanced section-a written examination requiring preparation at the first-year graduate level in several subject areas related to the student's principal area of interest and (c) concentrafion section-an oral examination concentrating mainly on the student's declared area of interest. Principal areas of concentration are: communications, computers, automatic control, electronics, electromagnetics, electro-pptics and power. Students interested in the related areas of electrophysics and system engineering should refer to the corresponding Ph.D. programs described under those titles.

Details regarding allowed subject areas, recommended background courses, sample examination questions and the precise format for the coming year are available from the latest Graduate Student Manual.

Guidance Committeo-On passing the qualitying examinations, the graduate student suggests a guidance committee composed of three members of the faculty, one selected from the student's major area of interest and the other two from the two minor areas. The member representing the major area is named chairman of the committee and becomes the student's prospective thesis adviser. information regarding seiection of thesis topics and advisers is available in the electrical engineering graduate office. In the event a thesis adviser other than the chairman is agreed on, the adviser becomes a fourth member of the guidance committee. In consuitation with the chairman and student, the committee members from the minor areas will approve the student's minor program. In addition, the guidance committee will approve the student's dissertation and conduct the thesis defense examination.

Course Requirements-Polytechnic requires that each candidate for the doctorate complete a minimum of 90 units of academic work beyond the bachelor's degree, including a minimum of 24 units of dissertation research. Ph.D. students are required to take a minimum of 12 units of courses in each of two minor areas. The minor must be in an area that is both distinct from
and yet consonant with the student's major area of study. Approval of the minor program is described in the preceding paragraph. The major program of study is developed by the student in consultation with the chairman of the guidance committee. The major program should constitute a coherent study in depth of the most advanced knowledge in the student's chosen area of concentration. Attendance at graduate seminars is expected when they are offered in the student's principal area of interest (see course description EL 891).

Area Examination-The area examination is an oral examination administered by the guidance committee and is normally taken at the midpoint of the student's dissertation research program. The function of the examination is primarily to assess the depth of knowledge and understanding possessed by the student and secondarily to monitor the student's progress in the initial phase of the doctoral research program. The area examination is attended by the members of the guidance committee together with other appropriate faculty members who, because of their knowledge in the student's area of concentration, will assist in meeting the objective of the examination. An outline of the area defined for examination is prepared by the student and approved by the chairman of the guidance committee. Postponement of the examination beyond the midpoint (12 units) of EL 999 registration will require the approval of the doctoral adviser.

Language Requirement-The Department of Electrical Engineering and Computer Science normally requires the student to demonstrate reading knowledge in either French, German or Russian. Substitution of another language requires demonstration of the existence of a body of relevant technical literature and approval by the Graduate Language Board.

Submission of the Thesis and Final Examination-On completion of the doctoral dissertation, the candidate will submit to an oral defense of the thesis. The examination is conducted by the guidance committee but is open to all members of the faculty and to such other persons as may be invited. Copies of the dissertation will be made available to prospective examiners a reasonable time in advance. The guidance committee chairman will notify the Office of Graduate Studies of the candidate's readiness to submit to examination so that the Office of Graduate Studies may schedule the examination date. The student is advised to consult the Office of Graduate Studies in order to meet the regulations regarding submission of the final manuscript, reproduction and binding.

UNDERGRADUATE COURSES

Students are advised to consult the departmental Undergraduate or Graduate Student Manual and the Registration Bulletin for changes in courses, course content and prerequisites in effect subsequent to the publication of this catalog.

General prerequisite: Students may not register for any junior- or senior-level courses until every freshman requirement is completed.

BASIC COURSES

EE 101 Electrical Systems I

3.0:3

Passive and active circuit elements. Node and loop analysis, source transformations, linearity and superposition, voltage and current division. Thevenin's and Norton's theorems. Source-free and forced responses of RL, RC and RLC circuits. Prerequisltes: MA 104 and PH 103.

EE 102 Electrical Systems il

3:0:3
Continuation of EE 101. Coupled circuits and transtormers, sinusoidal steady-state response, resonance, positive real functions, power calculations, three-phase systems, introduction to Fourier series. Prerequisites: EE 101 and MA 104.

EE 103 Electrical Systems III 400:4
Analog and digital systems. Integro-differential equations and recursion equations. Solutions by Laplace and 2 -Transforms. Transfer functions and synthesis. Discrete and continuous convolution. Frequency response, discrete Fourier series and Fourier integral. Prerequisite: EE 102.

CONTROL AND INSTRUMENTATION

EE 104 Feedback Syatem Principles
3.0:3

Introduction to feedback systems: reduced sensltivity, disturbance input attenuation and stabilization. Analog and digital control systems. Position servo analysis and design. Performance specifications, signal flow graphs, root loci, Routh and Nyquist stability tests. Prerequisite: EE 103.

EE 107 Controf System Deslgn*
3at: 3
Design of linear feedback control systems in the complex and real-frequency domains. Lag, lead, lag-lead compensators. Design of pole-placement controllers. Sampled-data systems. Integral and sum-squared error criteria. Parameter optimization. Prerequisite: EE 104.

EL 511† Computer-Alded Analysis and Design of Linear Networks*

See graduate course listings.

ELECTRONIC CIRCUIT ANALYSIS AND DESIGN

EE111 Solk-State Devicas and Circuits I
3:0:3
Introduction to semiconductor physics, diode and bipolar transistor devices and models. Large and small-signal operation of transistors. Inverters, emitter followers, differential amplifiers, transient response of transistors and transistor capacitor circuits. Prerequisites: PH 230 and EE 102.

EE112 Solk-State Devices and Circuits II 3:0:3 Junction and MOSFET transistor physics and models. Singledevice circuits and MOSFET inverter pairs. Low- and high-frequency response of single-stage amplifiers. Transient response. Integrated circuit operational amplifier design, analysis and applications. Bipolar and MOSFET logic families. Prerequisite: EE 111.

EE113 Solid-State Devices and Circuits III

 3:0:3 Voltage sweeps and function generators, multivibrators, comparators. Digital circuit and system applications including counters, shift registers, adders and memories. Sinusoidal oscillation and peak detection. Prerequisite: EE 112.EE 114 Physical Electronics*
3.0;3

Introduction to study of physical electronics inciuding motion of charged particles in presence of eiectric and magnetic fields. Space-charge limited devices, elements of semiconductor physics as applied to P-N junction theory, photo-dlodes and solar cells, breakdown effects and transistor devices. Prerequlaite: EE 111.

EE115 Advanced Electronics 3:0:3

Speclal topics in electronic circuits and instrumentations, second-order modeling. Advanced trensistor and integrated circuif design, active end passive memories. Application of bistate devices. Nonlinear devices Including topice such as digital circuits, blocking osclllators, ferro-electric and ferromagnetic circuits. Prarequislte: EE 113.

EE 116 Communication Electronics

3:0:3
Design and analysls of smalt elgnal end large signal tuned ampliflers, sine-wave oscillators, mixers, AM modulators and demodulators, FM modulators and demodulators. Prerequieite: EE 112.

EE 119 Semiconductor Technology*

3.0:3

Princlpal techniques involved in processing and fabrication of semiconductor devices and integrated circults including material preparation, junctlon forming, circuit Integratlon and packaging. Prerequisite: EE 111 or MT 410.
Also llated under MT 375

COMMUNICATIONS AND
 INFORMATION TRANSMISSION

EE 141 Slgnal Processing
3:0:3
Discrete Fourier transforms, sampling theorems, digltal filtering. Rendom signals In noise, spectral density, autocorrelation, statlotical measurement of signals, spectral estimation. Detectlon, estimation and IInear recursive estimation. Prerequisites: EE 103, CS 111 and MA 223.

EE 143 Computer Procesaing of Signala*
3:0:3
Processing of signals from speech, biomedical, seismic and traftlc-flow measurements. Information extraction: filtering, spectral analysis, model paremeter estimation. Simulation of dynemic systems and signals. Pattern processing and recognition. Projects with small and large computers. Prerequisite: EE 141.

EL 533t Introduction to Communication Syatems
See graduate course listings.

ELECTROMAGNETIC FIELDS

EE 161 Transmission LInes and Wavee

4:0.4
Transmission lines, acoustic and electromagnetic plane waves. Praflection and transmlssion et discontinultles; power and energy relatlons. Standing waves, impedance, reflection, transmission coefficients. Lossy transmission lines. Dispersion, group velocity. Spherical acoustic waves. Vectore, Maxwell's equations in freespace in integral form. PTerequisiteg: EE 102. PH 103, MA 103 and MA 104.

EE 162 Electromagnetic Fielda

4:0:4
Vector calculus, Gauss' and Stokes' theorems, Maxwell's equetlons in differential form in free space. Flelds in presence of conductors, dielectrics and megnetic materials. Plane waves in dielectrics and conductors. Electrostatics, magnetostatics. Poynting's theorem. Waveguides. Radiation and antennas, far fielde, arraye. Prerequislte: EE 161.
EL 571.572t Engineering-Electromagnatics I, II
See graduate course listings.

ELECTRONIC MATERIALS SCIENCE

EE 187 Cuantum and Solld State Electronica 3:0.3
Review of experimental necessity for introduction of quantum stetes and wave-particle dualism. Elements of wave mechanics and quantum statistics. Application to electronle structure of atoms, periodic table, properties of electrons in metals, semiconductors, insulators. Laser systems. Prerequisites: EE 162 and PH 230.

EL 551-552 \dagger Electro-Optics I, II
See graduate courses listings.
EL 557 \dagger Introduction to Electric and Magnetic Propertiea of Solids
See greduate course listinge.

ELECTRIC POWER

EE 180 Electrical Machinery I

3:0:3
Description, theory and analysis of steady-state performance are presented for the four types of electrical machine: transformer, induction motor, synchronous machine and DC machine. Equlvalent circuita end vector diagrams are derived and used as the primary tools for analysls. Prerequisite: EE 162.

EE 181 Electrical Machinery II

3:0:3
Two alternatlve unlfying viewpoints of electrical machines are presented. One is besed on physical considerations and leade to design guidelines. The second is based on Kron's theory and provides means for system analysis. Prerequisite: EE 180.

EE 183 Electric Power Systems
3:0:3
Principles of oparating electric power systems. Transmission Ines: Inductance and capacitance parameters and current-voltage relations. Power system representation. Introduction to network calcuiations, symmetrical phase components, dynamic stablity and economic dispatch. Prerequislte: EE 102.

EE 199 Electrical Machinery Laboratory

See course listing under electrical enginearing laboratory. Prerequislte: EE 181.

EL 564 \dagger Electromechanical Power Conversion*

 See graduate course listings.
EL 581† Introduction to Plasma Engineering*

 See graduate course listings.
ELECTRICAL ENGINEERING LABORATORY

Students enrolled in electrical engineering laboratory courses may be required to purchase a laboratory kit consisting of electronic parts and components. This is in addition to the indicated laboratory fees.

EE 188 Computer Laboratory 23:3 A serles of required experiments provides an introduction to email computers: digital and analog circuit techniques, small computer assembly language programming, minicomputer and microcomputer organizatlon and operations. Lab fee required. Prerequisite: CS 237.

EE 189 Computer Laboratory II 1:32 An introduction to the use of small computers as systems components: Interrupt programming concepts, analog slgnal interfacing and real time, closed-loop systems. Independent learning and hands-on experlence with different small computers are provided by projects involving such subjects as computer graphles, light intenslty control and motor speed control. Lab fee required. Prerequlelte: EE 188 and CS 237.

EE 193 Sophomore Electrical Engineering Laboratory 1
 0:3:1

introduction to electrical measurements. Lab fee required. Prerequisite: EE 101.

EE 194 Sophomore Eectrical Engineering Laboratory II

0:3:1
Electric circuits laboratory. Lab fee requlred. Prerequisite: EE 102

EE 195 Junior Elactrical Engineering Laboratory 1
Circuits and electronics laboratory. Lab fee required. Prerequisites: EE 194, EE 102, EE 111.

EE 196 Junior Electrical Engineering Laboratory II

1:3:2
Experiments selected from various areas of electrical engineering. Lab fee required. Prerequisites: EE 185, EE 162, EE 104 and EE 112.

EE 197 Senior Elecirical Englneering

 LaboratorylExperiments selected from various areas of electrical engineering. Lab fee requlred. Prerequisites: EE 196 and EE 143.

EE 198 Project Laboratory

1:043
Laboratory project under supervision of an adviser. Must be an experlmental project with a final report: either designing, buliding and testing a piece of equipment or developing, debugging and documenting a software package. Lab fee required. PTerequisite: EE 197 or EE 189.

EE 199 Senlor Electrical Engineering

 Laboratory II1:3:2
Experiments selected from various areas of electrical engineerIng. Special sections in electrical machinery, semiconductor technology, etc., may be offered. Lab fee required. Prerequisites: EE 197 or EE 189. (Additional prerequisites may be specified for special sections.)

INTERDEPARTMENTAL COURSES

EE 370 Principles of Electrical Engineering 300:3
Electrical signals and circuit elements. Network analysis. Transient and sinusoidal steady-state analysis of first and second order circuits. Diods and transistor circuits. Electric power devices including transformers, DC motors and generators, and induction motors. Cannot be used to satisfy any electrical engineering degree requiremants. Prerequisite: MA 104, PH 102.

EE 374 Instrumentation Laboratory
0:3:1
Experiments designed to supplement EE 370. Cannot be used to satisfy any electrical engineering degree requirements. PTerequisite: EE 370.

SPECIAL LISTINGS

EE 391-394 Special Studles In Electrical Engineering*

credit to be arranged
Advanced course in alectrical angineering given to selected students. Course is vehicle for presenting noval material, trying new educational methods, taking advantage of special competences of visiting staff. Prerequisite: permission of electrical engineering adviser.

EE 397 Bachelor's Theais in

Electrical Enghoering
3 credite
Individual solution of electrical engineering problem, Involving adequate statement of problem, choice of method of attack, proper solution of problem. Presentation of results in formal
bound report. Prerequisite: senior status and approval of head of undergraduate program.

EE 388 Profect in Eectrical
 Enghneering

credit to be arringed
Solution of electrical engineering problem or detaited study of advanced area of electrical engineering under close supervision of adviser. Written report. Prerequisite: senior status.

GRADUATE COURSES

Graduate courses in electrical engineering are offered on each campus on a regular basis, annually or in twoyear or three-year cycles. Consult the Graduate Student Manual for these scheduling cycles as well as for information about day offerings and about the summer program. The electrical engineering graduate mailing, sent out to continuing students prior to each registration, contains the latest information on selected topics course offerings, curriculum and course revisions.

Course number system: the courses below are grouped in terms of the middle digit which defines the academic area. The first digit represents the level:

5-senior/graduate level
6-first-year graduate level
7,8-advanced courses
9-miscellaneous courses
Courses in selected topics bearing the same numbers may be repeated for credit provided the topics are different, subject to adviser's approval.

LINEAR SYSTEMS AND NETWORKS

EL 511† Computer-Alded Analysis and

 Design of Llnear Networks*21/2:0:3
Network functions. Circuit analysis by computer. Computeraided design of LC and RC driving-point impedances, transfer functions and fllters. Design of active circuits. Approximations for computer-aided implementation. Apptications. Prerequisites: CS 530 and EE 103.

EL 610 Unear Systems 21/2:0:3 Basic systems concepts. Equations describing continuous and discrete time linear systems. Responsa representation and calculation by digital and anatog computer. Time domaln analysis, state variables, transition matrix, pulse and impulse response. Transform methods. Timevariable systems. Prerequisite: EE 103.

EL811 Skenals, Syatems and Trantoforms 21/2:0:3 Continous and discrete linarr systams, system function. Fourier transforms, periodic functions, Z-transforms, discrete Fourier series, fast Fourier transforms. Analog and digital filters, finite order system functions. Digital processing of analog signals. Sampling theorams. Prerequlsite: EE 103.

EL813 Applied Matrix Theory
 21/2.0.3

In-depth introduction to theory and application of linear operators and matrices in finite-dimensional vector space. Invariant subspaces, elementary divisors, canonic forms and minimax theorems for eigenvalues of hermitian pencils. Prerequisites: MA 103 and MA 104.
Also llsted under MA 337

EL 615 Network Theory of Lumped and Distributed Siructures*

21/20:3 Network principles derived from physical constraints are emphasized. Immittance and scattering formallsms, general energy and reciprocity theorems, properties of distrlbuted parameter and nonreciprocal networks. Broadband theory and the synthesis of transmission line broadband quarter wave transformers. Prerequisite: graduate status.

EL617 Syatem Reliability

21/2:0:3
Structural reliability, redundancy, bounds on reliability of corrplex systems. Repairable systems: Markov modele, msintainability and availability. Optimization of spare parts inventorles, inspection intervats and replacement times. Failure models: accumulated shocks and stress-strength-time. Marginal fallures, dependent failures. Prerequisite: MA 223 or MA 561 or equivalent.

Also listed under IE 885 and OR 685

EL618 Component Reliability

21/2:0.3
Failure modele for industrial components: exponential, Weibull, lognormal, gamma, Gumbel and other distributions. Failures and hazard rates, graphical probability piots and maximumlikelihood parameter estimation and testIng. Sampling plans based on life tests and eccelerated life tests. Serial and parallel analysis on components reliability. Prerequisite: MA 223 or MA $56 t$ or equivalent.
Also listed under IE 686 and OR 688
EL 711 Advanced Signals and Syatema* $21 / 2: 0: 3$ Approximation methods in digital simulation of anelog signels. Sampling theorems. Maximum system response under constraints. Analytic properties of Laplace transforms, complex inversion factorizetion, windows, extrspolation, maximum entropy. Two-dimensional and Hankel transforms. Diffraction. Fourier optics. Ambiguity functions and pulse compression. Spectral estimation. Prerequisite: EL 611.

EL 713 Dipitisl Stanal Processing*
 21/2:0:3

Time and transform domein description of discrete-time signals and filters. Z-transforms, difference equations, discrete Fourler analysis and the FFT. Properties and design of recursive and non-recursive filters. Effects of finite precision arlthmetic and round-off errors. Hardware realizations of digital filters. Introductlon to spectrel analysis. Prerequisltes: EL 810 and 611.

EL 714 Smoothing and Prediction of Discrete-Time Signals*

21/2.0.3
Review of discrete-time rsndom signals in time and frequency domsins. Finite memory end expanding memory predictorcorrector estimators. Lineer mean-square estimation, the discretetime Wiener-Hopf equation, Wiener and Kalman-Bucy filters with nonlinear applications. Prerequisites: EL 713 and EL 631.

EL 911-912 Selected Topics in Systems and

 Network I, II*each $21 / 2: 0: 3$
Selected topics of curent interest in systems and networks. (See departmentel mailing for detailed description of each particular offering.) Prerequisite: specified when offered.

CONTROL SYSTEMS

El 621 Feedback Controll

$21 / 2,0,3$
Anelysis and synthesis of single-input-output, continuous time, control systems. Stebillty. Specifications for closed-lopp system performance. Classicel end modern compeneation methode. Introduction to optimization: integral-squareerror compensetion. Prerequisite: EE 104.

EL 622 Feedback Control II
21/2:0:3
Analysis of sampled-data and discrete-time systems by Z-transform and state variable methods. Speciflcationa for closed-loop system performance. Introduction to nonlinear systems and stability. Nonlinearlties, linearization, limit cycles and describing function. Stability theory and Lyapunov functions. Prerequisites: EL, 610 and EL 621.

EL 720 Syatem Theory and Feedback*

21/2:0:3
Deeign of multivariable feedback systems in the complex s-plane. Stability of interconnected systems from component transfer matrices. The clsss of stabilizing controllers for the singleloop feedback system. Minimal controiler realizations, observability and controllability. Prerequlsites: EL 610 and EL 613.

EL 721 Nonlinear Control Syatems*

211003
Analysls and design techniques for nonlinear control systems. Phese plane, piecewise linearization, Lyapunov's second method, describing function, Popoy locus and circle criterlon methods. Applications to relsy and saturating systems and systems with other nonlinearlties. Prerequisites: EL 610 and EL 621.

EL 723 Syatern Optimization Methods

$21 / 200 ; 3$
Formulatlon of system optimization problems. Elements of functional analysis applied to system optimization. Local snd global syetem optimization with and without constraints. Variational methods, calculus of varlations, and linear, nonlinear and dynamic programming. Iterative methods. Examples and applications. Prerequisites: EL 810 or EL 613.

EL 621 Analyats of Stochastic Syatems* 21/2:0:3
Stochestic difference and differentlal equatione. Wiener process and Markov systems. Kolmogorov's equatlons for Markov systems. Stability of stochastic eystems: stochastic Lyapunov functlons, moment equations. Prerequisite: EL 631.

EL 823 Optimal Control Theory ${ }^{*}$ 21/2:0:3
Optimal control problem for deterministic systeme with verious constraints. Solution for both continuous and discretetime systerns using maximum principle end dynsmic programming. Hamilton-Jacobl theory as applied to synthesis problem. Optimization problems with state variable constraints. Prerequisite: EL 723.
Also llated under MA 844

EL 921-922 Selected Toplics in Control

 Engineering I, it*each $21 / 200: 3$
Topics of current interest to feedbeck and control systems engineers. (See department mailing for detailed description of each particular offering.) Prerequisite: specified when offered.

INFORMATION SCIENCE

EL531 Probabillty
21/2:0:3
Events, probebility, repeated trials. Rendom variable, distributlons, moments, characteristic functlons. Functions of random varlables. Sequence of random variables. Limit theorems. Engineering applications of statistics. Prerequisite: MA 223.

EL533 \dagger Introduction to Communication Systems 21/2:0:3 Examples, principles and techniques for modern communications systems. Analog and digital slgnels, sampilng, quantization, signal representation. Analog and digital modulation, pulse code modulation, time and frequency multiplexing. Noise in communicatlon systems. Prerequisites: EE 103 and MA 223.

EL 631 Engineering Applications of Stochastic Processes

21/2:0:3
Correlation, power spectrum, coherence, with applications in linear systems. Nonstationsry signals, normsl processes,
mean square estimation, spectral analysis. Toplcs in Markov processes. Prerequisite: EL 531.

EL 833 Detection and Estimation Theory

21/20:3
Detection of signals in noise, matched filters, M-ary digital communications. Signal detection and feature extraction in notsy environment based on likelihood ratio tests. Gametheoretic formulation of classification probiems. Bayestan and point estimators. Near-optimum detectors. Combined estimation and detection. Wiener theory and Kalman-Bucy filters. Prerequisite: EL 631.

EL 635 Principles of Data Communication Networks

2 $1 / 2: 0: 3$ An introductory course in data communications and computer communication networks. Many examples of networks, modeling. Basic principies of the design and performance analysis of networks. Data communication hardware: terminals, modems, multiplexers, concentrators, communications media. Nodal processor and host processor architecture. Software considerations and design. Protocols. Line control, polting and random access methods. Satellite and packet radio networka. Reliability. Regulatory traffic. Interconnection of networks. Course will provide a broad overview of current issues on networks. An assessment of state-of-the-art technique and a glimpse at emerging questions. Prerequisite: graduate status.
Also ilsted under CS 635
EL 733 Digital and Data Communications
21/2:0:3
Concepts of M -ary communications, optimum receivers, signal design, block coding, achievement of channel capacity. Convolution coding and decoding, decoding algorthms. Transmission over band-limited channels, intersymbol interference, fixed, adaptive and feedback equalization, concepts of modern design. Prerequisite: EL 533.

EL 735-736 Computer-Communication

 Networks [, lleach 21/2:0:3
Analytical and design techniques for large centralized and distributed data networks. Examples of computer and terminaloriented networks: modeling of sources, communications links, processors. Queuing analysis. Capacity assignment for distributed and centralized networks. Concentrators, multiplexers, poiling, buffers, routing, network flow algorithms, topological design of networks, reliability, software considerations, design examples, societal questions. Emphasis on current literature. Students required to report on current literature in the field. EL 735 prerequisite: EL 531, EL 635. EL 736 prerequisite: EL 735.

EL 738 Algebraic Codes*

21/2:0:3
General theory of linear codes. Groups, rings, fields, matrices and vector spaces. Coding and error correction methods. Encoding and decoding cyclic codes. Convolutional codes and other encoding schemes. Capabilities and limitations of errorcorrecting codes. Emphasizes codes used in computers. Prerequisite: graduate status.

EL 739 Information Theory*

21/2:0:3
Concepts of entropy and mutual information as mathematical measures for discrete information sources and discrete comt munication channets. Source encoding theorem and source coding techniques. Extension to sources with memory, channel capacity and noisy channel coding theorem. Extensions to continuous waveforms. Prerequisite: EL 531.

EL833 Advanced Signal Processing*
 21/2:0:3

Radon-Nikodym derivatives, Hajek-Feldman theorem for Gaussian stochastic processes. Detection and parameter estimation of stochastic and deterministic signals tmbedded in coiored and nonstationary Gaussłan noise. Nonparametric methods in detection and estimation. Diversity reception systems. Prerequisite: EL 633.

EL 831-032 Selected Topics in Information

 Selence 1, 11*each 2 $\frac{1}{2}: 0: 3$
Selected topics of current interest in information science. (See departmentai mailing for detalied description of each particular offering.) Prerequisite: specified when offered.

ELECTRONIC DEVICES, CIRCUITS AND SYSTEMS

EL 641 Advanced Electronle Clreultry 1
 21/2:0:3

Basic semiconductor physics. Small-signal, low-frequency models for junction transistors, blasing of junction transistors. Physics, models and biasing for fieldeffect transistors and vacuum tubes. General treatment of nonlinear controlied sources. High-frequency modeis. Single- and two-stage broadband small-signal amplifiers, discrete and integrated circuits. Prerequisite: graduate status.

EL 842 Advanced Electronic Circultry II
21/2:0:3
Three-stage amplifiers, discrete and integrated circuits. Complete, integrated, operational ampifier. Tuned circuits and impedance transformers, narrow-band linear amplifiers. Tunedcircuit sine-wave oscillators and mixers. Prerequisite: EL 641.

EL 643 Advanced Electronic Circultry III
21/20:3 Junction and fieldeffect transistors as switches. Basic digital and switching circuits. Integrated circuitt togic schemes and "building blocks." Tuned and untuned power amplifiers. Sweep circuits and synchronization. Prerequisite: EL 641.

EL 844 Semiconductor Technology $21 / 2: 0: 3$ Review of electrical transport properties of semiconductors. Preparation of semiconductor materials. Impurity diffusion, diffusion mechanisms, concentration profiles. Surface preparation and contacts. Integrated circuits, design of circuit components techniques used in fabrication, varlous limitations on performance. Prerequisite: graduate status.
Also listed under MT 705
EL 845 Principles of Semiconductor Derices I* $21 / 2: 0: 3$ Introduction and review of semiconductor physics. Non equitibrium bulk and p-n junction properties discussed along with relevance to design and operation of photoconductive detectors, rectifiers, mixers, switches, varactors, snap diodes. Prerequisite: graduate status.

EL 846 Principles of Semleonductor Devices II* $\quad 21 / 2: 0-3$ Development of phenomenological and engineering aspects of bipolar transistors, junction field-effect transistors, MOS capacitors, MOS field-effect transistors, charge-coupled devices. Prerequisite: EL 645.

EL 847 Power Electronics
21/2:0:3 Principles of thyristor devices, dynamic characteristics of $D C$ choppers, dependence of turnoft circuits on load characteristics. Phase control, full wave circuits with inductive load, commutation. Power inverters. Prerequisite: graduate status.

EL 941-942 Selected Toples in

$$
\text { Electrontea } 1,11^{*}
$$

aach $21 / 200=3$
Special topics of current interest to staff in the fietd of electronic devices, circuits and systems. (See departmental mailing for detailed description of each particular offering.) Prerequisite: to be specified when offered.

ELECTRO-OPTICS, QUANTUM ELECTRONICS AND MATERIALS SCIENCE

EL551-552† Electro-Optles 1, Il

each $21 / 2: 0: 3$
Propagation of plane waves: polarization, reflection, refraction and diffraction of light. Interference: spatial and temporal coherence, the Michelson and Fabry-Perot interferometers and applications. Visible and infrared light sources, black-body radiation, radiation by atom, stimulated emission of radiation, coherent light sources. Dielectric materials, anisotropy and birefringence, electro-optic effects and applications. Image formation: holography, spatial signaks, spatial Fourier transform, spatial filtering, optical information processing, optical communication, computer applications. EL 551 prerequisite: EE 162 or equivalent. EL 552 prerequisite: EL 551.

EL 557 \dagger Introduction to Electic and Magnetic Properties of Solids
 21/2:0.3

Crystal structure and dynamics, fattice vibrations, the phonon, thermal conductivity of solids. Energy-band theory, Brillouin zones, conductors, semiconductors, insulators, semiconductor junctions, junction devices, lightemitting diodes, detectors for visible and infrared. Prerequlsite: EE 167.

EL 851 Statistical Mechanlcs I

$21 / 2: 0,3$
Equilibrium distributions. Relationships to laws of thermodynamics. Quantum effects. Maxwelf-Boltzmann, Fermi-Dirac, Bose-Einstein distributions. Applications to bulk properties of matter and to thermal radiation. Kinetic theory. Nonequilibrium phenomena using Boltzmann transport equation. Prerequisite: graduate status.

Also listed under PH 663

EL 852 Statistical Mechanics il*

21/2:0:3
Micro-, Macro-, and grand-canonical ensembles and principles of classical statistical mechanics. Condensation phenomena. Treatment of fluctuation and transport phenomena. Density matrix formalism of quantum statistical mechanics. Discussion of many-body problems. Prerequisite: EL 651 or PH 663.

Also llsted under PH 884

EL653-054 Cuantum Electronics I, il
each $21 / 2,0: 3$
Interaction of electromagnetic radiation with matter Spontanecus and induced emission and absorption of radiation. Gaseous and solid-state maser devices. Theory of linear dielectrics. Phenomenological theory of nonlinear dielectrics. Quantum theory of nonlinear susceptibility with application to nonlinear conductivity. Raman nonlinearities, nonlinear absorption and scattering processes, two quantum photoelectric effect and quantum theory of damping. Wave propagation in nonlinear media with application to parametric generation, down conversion and oscillation, harmonic generation and mixing. EL 653 prerequisite: EE 167. EL 654 prerequisite: EL 653.

EL655 Quanturn Mectranics 1 21/2.0:3
Quanturn mechanics with applications to atomic systems. The use of Schroedinger's equations. Problems and approximation methods. Prerequisite: graduate status.

Also listed under PH 607

EL 858 Quantum Mechanics II*
21/2:0:3
Quantum mechanics with applications to atomic systems. The use of Schroedinger's equations. Angular momentum and spin. Problems and approximation methods. Semiclassical theory of field-matter interaction. Prerequisite: EL 655.

Also listed under PH 668

EL 857 Electric and Magnetic Properties

 of Sollds*21/2:0:3
Dielectric properties, anisotropy, ferroelectricity and piezoelectricity. Optical properties, optical activity and birefringence, electro-optic and magneto-optic effects and their applications.

Magnetic properties, magnetization mechanisms, dia- and para-magnetism, ferro-, ferri, and antiferro-magnetism, nuclear magnetic, ferro-magnetic and electron paramagnetic resonance. Prerequisite: EL 557.

EL 658 Fiber Optic Communications * $21 / 2: 0.3$
Preview of fiber optic communications, optical fibers, light sources, detectors, modulation techniques. Transmitter, receiver and repeater technology. System applications. Integrated optics. Prerequisite: graduate status.

EL 751-752 Quantum Optics 1, 11^{*} each $21 / 20: 0: 3$ Temporal and spatial coherence, interference laws and experiments, interference spectroscopy, Lagrangian and Hamiltonian formulation of field equations. The Fock representation, field creation and annihilation operators, coherent states, spontaneous and stimulated emission of light. Quantum correlation functions, photon coincidences, the density operator, correlation functions and quasi-probability distributions. Light beam and laser field models. Photon counting, anti-correlation effects. EL 751 prerequisites: EL 671 and EL 655 or a course in modern physics. EL 752 prerequisite: EL 751.

EL 755 Parametric Electronics*
$21 / 2,0,3$
Review of passive systems. Discusstion of tumped and distributed parametric circuits. Analysis by smail signal theory, frequency-power relations, Fioquet theory, coupled-mode principles, Brillouin diagrams. Semiclassical theory of parametric interactions. Applications to microwave, optical, ultrasonic and electron beam parametric systems and to laser-fusion research. Prerequisite: EL 673.

EL 950 Laboratory in Electronic Materials and

 Electro-Optics*0.5:3

Selected experiments in electrical properties of materials: physical properties of serniconductors. Hall effect measurements, photoelectricity, superconductivity, magnetoresistance, masers and fasers, harmonic generation, frequency mixing and modulation in optics and quasi-optic region. Experiments of project; type designed to prepare students for independent research in above areas. Lab fee required. Prerequisite: graduate status.

EL 951-952 Selected Topics in Quantum Electronics, Material Science and Electro-Optics I, 11*

each $21 / 20,3$
Topics of current interest deafing with interaction of matter with electromagnetic fields. (See departmental mailing for detailed description of each particular offering.) Prerequisite: specified when offered.

POWER ENGINEERING

EL 504 \dagger Electromechanical Power Conversion* $\quad 21 / 2.0: 3$

 Motion of elementary charged particles in electromagnetic fields. Transformation laws for the electromagnetic fleld intensities. Magnetoplasma-dynamical equations. Power density relations and the design of the armature conductors in terms of power densities. The equivalent circuit for an electromechanical power conversion system. Homopolar devices. The design of the magnetic circuit. Representation of fields in terms of traveling waves; synchronous and asynchronous interaction. Steady-state performance of synchronous converters. MHD power generation. Prerequisite: EE 162.
EL 647 Power Electronlcs

See course listings under electronic devices, circuits and systems.

EL661 Studies in Power System Engineering $\quad 21 / 200: 3$
Study of interconnected power utilities from system engineering point of view. Basic characteristics of power systems. Load
fiow. Economic dispatch of power. Tieline and frequency-control performance. Network decompositions. Prerequisite: graduate status.

EL 683 Electrical Transionts in Power Systems * 21/x:0:3 Analysis of lumped-circuit, normal and abnormal transients in power equipment and systems. Short-circuit fault analysis and transient recovery of three-phase circuits. Analysis of travelingwave surges on transmission lines, windings and on integrated systerns. Computer modeling. Prerequisite: graduate status.

EL885 Power SystemStablity ${ }^{+}$
21/20:3
Introduction to the study of power systems dynamics: mathematical modeling of prime movers, power plants, synchronous machines, field exciters, transmission lines, relay loads and stabilizers. Prerequisite: graduate status.

EL 688 Power System Stability Il*
21/20:3
Study of electrical machine and system dynamics, system goveming and generation control, prime-mover, energy supply, system dynamics and control. Prerequisite: EL 665.

EL687 Introduction to Thermonuclear Power* 21/2:0:3 Survey of problems associated with attaining controlied themonuclear power. Fusion reactions, thermonuclear reaction rates, plasma physics, radiative losses from plasmas, methods of plasma contalnment, energy extraction from plasmas. Prerequisite: graduate status.
Also listed under NU 819
EL 961-962 Selected Toples In Power 1, l
each $21 / 20: 3$
Topics of current interest in electric system engineering that are relevant to the electric power industry. (See departmental mailing for detailed description of each particular offering.) Prerequisite: to be specifled when offered.

FIELDS AND WAVES

EL 571-572 \dagger Engineering Electromagnetics 1, 1

each $2^{1 / 20: 0.3}$
Engineering applications of electromagnetics. A device-hardware oriented course for both graduate and advanced undergraduate students. Topics include: hollow conducting waveguides, dielectric guides, two-wire, coaxial and strip transmission lines, linear antennas, arrays, horn and dish antennas. Waveguide components: attenuators, phase shifters, wave-guide-coaxial transitions, etc. Electromechanical transducers: loud speakers, microphones, relays, etc. EL 571 prerequisite: EE 162. EL 572 prerequisite: EL 571.

EL 671 Fietds and Waves
21/2.0:3
Basic concepts of eiectric and magnetic fields, their sources and their propagation via waves are treated. Emphasis is placed on understanding electromagnetic wave phenomena (interference, refiection, refraction, etc.) and their engineering applications over the entire electromagnetic spectrum. Prerequisite: graduate status.

EL. 672 Electrodymamies: Wava Propagation and Guldance

21/2:0.3
Course for students requiring understanding of electromagnetic fields from engineering point of view. Physical concepts, systematic mathematical methods and engineering interpretation of reeults equally emphasized. Excitation and propagation in metallic and dielectric guiding structures, discontinuties, resonators, radiation from antennas. Prerequisite: EL 671

EL 673 Electrodynamics: Flelds and Matertals $\quad 21 / 2: 0.3$ Interaction of electromagnetic fields with material media from classical viewpoint. Macroscopic description of dielectric, magnatic and conducting materials; energy relations, disper-
sion, and attenuation in dielectrics and ionized media. Wave propagation in anisotropic crystals and ferrites, waves in inhomogeneous media. Prerequisite: EL 671 or PH 623.

Also lisied under PH 624

EL674 Waves in the Atmosphere*
 2 1/20:3

Static and dynamic conditions in the atmosphere. Wave types, theory of gravity waves and examples, effects of wind. Theory of tidal waves, dynamo effect, planetary and Rossby waves. Wave ducting, waves in the ionosphere. Turbulence in the atmosphere. Prerequisite: graduate status.

EL678 Fundamentals of Radar*

21/2:0:3
Principles of range and direction finding by means of radio echoes. Requirements and limitations of radar, the radar equation and statistical nature of reception. Establishment of design criteria for radar receivers, indicators, modulators and microwave components. Presentation of systems and techniques including MTI, Doppler radars and pulse compression. Prerequisite: EL 611.

EL 774.772 Radiation and Diffraction $1,11^{*} \quad$ each $21 / 2,0: 3$ First semester: an introductory level with asymptotic methods for radiation and diffraction. Saddle point approximations of radiation and diffraction integrals for harmonic and transient fields, wave packets, ray description of reflection and refraction, diffracted rays (geometrical theory of diffraction). Second semester: rigorous mathods. Eigen-function expansions, discrete and continuous spectra, Green's functions alternative representations, asymptotic reduction of rlgorous integral representations. EL 771 prerequisite: EL 672. EL 772 prerequisite: EL 71 .

EL 773-774 Gulded Waves and Beams $1, \mathrm{H}^{*}$ each $21 / 2,0: 3$ Engineering applications of guided waves and beams in areas of electromagnetics (radar), microwave acoustics and integrated optics. Propagation characteristics of surface and leaky waves, effects of loss, mode coupling, characterization of discontinuittes. Propagation in periodic structures. Bearn fields, divergence, Fresnel and Fraunhofer approximations; scattering and guiding of beams by planar structures, beam displacement and distortion, coupling to surface waves. EL 773 prerequisite: EL 672. EL 774 prerequisite: EL 773.

EL 775 Antenna Theory*
 21/2:0:3

Concepts of antenna radiation patterns, radiation resistance, equivalent network, gain, effective area, reciprocity. Electromagnetic fields due to prescribed sources, Huygens' principle, Fresnel and Fraunhofer regions. Finite and infinite arrays. Mutual coupling. Aperture antennas. Traveling-wave antennas. Frequency independent antennas. Prerequisite: EL 672.

EL 778 Advanced Antenna Theory*

21/2,0:3
Fundamental principles of linear and planar phased amays, surfacewave and leaky-wave antennas, traveling-wave arrays. Concepts of gain, element pattern, element efflciency, active impedance, grating lobe serles. Mutual coupling effects. Review of gulded waves on open structures. Prerequialte: EL 75 .

EL 777.778 Ultrasonles 1,1I*

each $21 / 2 x=3$
Wave propagation in solids and applications to microwave acoustic devices and ultrasonic nondestructive evaluation. Elasticity and piezoelectriclty in crystals, stress-strain relation, plezoelectric coupling, crystal symmetry. Plane-wave propagation and refiection, Rayleigh, Love and other guided waves, feaky waves. Devicea treated include interdigitai transducers and fiters, RACS, real-time and storage correlators and convolvers. EL 77 prerequisite: EL672. EL 778 prerequisite: EL 77 .

EL 871 Advanced Ray Methods In Wave

 Propagation*21/20:3
Asymptotic theory of radiation and diffraction, with emphasis on inhomogeneous and dispersive media. WKB approximations and comparison methods, advanced saddle-point techniques and relation to ray optics. Space-time rays in inhomogeneous dispersive media, diffraction and transition phenomena for transients. Prerequisite: EL 772.

EL 873 Nonlinear Waves * $21 / 2 ; 0: 3$ Generic nonlinear wave equations. Whitham's Lagrangian formulation and averaging method. Quasi-particle techniques in nonlinear problems. Inverse scattering method. Application of KdV, nonlinear parabolic, etc., equations in electrophysics. Prerequisite: Ei 671.

EL 971-972 Selected Topics in Electromagnetic Theory I, II

each $21 / 2: 0.3$ Aspects of electromagnetic and acoustic wave propagation, diffraction and radiation that are of current interest, including wave interactions with materials and special mathematical and numerical techniques. (See deparimental mailing for detalled description of each particuiar offering.) Prerequisite: specified when offered.

PLASMA SCIENCE AND ENGINEERING

EL 581t Introduction to Plasma Engineering $\quad 2^{1 / 2}: 0.3$
Basic plasma concepts, collisional phenomena, elastic collisions, excitation, ionization, attachment, recombination, DC and AC breakdown and discharges, diffusion and mobilities, propagation of electromagnetic waves in plasma. Prerequisite: EE 162.

EL 681 Applied Plasma Physics*
21/2:0:3
Plasma diagnostic methods including etectrostatic and magnetic probes, spectroscopic methods, microwaves, etc. Selected topics in applied plasmas, including controlled thermonuclear research, MHD generation, chemical processing, etc. Prerequisite: EL 581.

EL 6B3 Physics of the Atmosphere*
$21 / 2 \cdot 0: 3$
Origin of solar system, planets, atmosphere. Structures, composition of pianetary atmospheres, minor constituents, natural and man made, gravitational effects and distribution, escape of gases. Sun and its relationship to earth and planets, atomic, molecular processes, stratosphere, ozone, winds and dynamics, mesosphere, thermosphere. Prerequisite: graduate status.

Also listed under AM 806

EL781.782 Wave Turbulence I, II*
each $21 / 20: 0$
Analysis of inhomogeneous and nonstationary turbulent fields. Kinetic and fluid dynamic descriptions of many-particle systems at both quasilinear and nonlinear levels. Wave-particle and wave wave instabilities treated as collision processes both classicaliy and quantum theoretically. Determination of selfconsistent kinetic equations for both particles and waves. Applications to space-time evolution of coupled background and turbulent wave fields. EL 781 prerequisite: graduate status. EL 782 prerequisite: EL 781.
Also listed under AM 753-754

EL 783-784 LInear Wave Processes in

 Plasmas I, II*each $21 / 2: 0,3$ Oscillatory and guided wave representation of fields in general linear systems. Self-consistent nonequilibrium field description of particle and wave dynarnics in classical plasma-like systems. Kinetic versus fluid dynamic description of gaseous and solid-state plasmas. Disperslon relations, wave structure and instabilities in isotropic and anisotropic plasmas. EL 783 prerequisite: EL 581. EL 784 prerequisite: EL 783 .

EL 981-082 Selected Topics in Plasmas $1,11^{*} \quad$ each 2 $1 / 1$ 保 3
Aspects of plasmas of current interest. Subjects drawn from plasma composition dynamics and interactions with electromagnetic fields. (See departmental mailing for detailed descriotion of each particular offering.) Prerequtsites: specified when offered.

DEPARTMENTAL PROJECTS, READINGS, THESIS AND SEMINARS

EL891 Graduate Seminar* 212:0:3

 Seminars in various areas of electrical engineering, electrophysics, system engineering and science, and computer science. Reports and discussions by staff members and students concerning recent developments in relevant areas. May be repeated for credit. Prerequisite: graduate status.EL 990-891 Laboratory internship I, II
each 0:5:3
Work in graduate laboratories under immediate guidance of faculty member. May be used as adjunct to or continuation of departmental graduate laboratory courses. Lab fee required. Prerequisite: degree status.

EL 993-994 Readings in Electrical Engineering

 $1, I I \quad$ each $21 / 2: 0: 3$ Designed primarily for students who desire to push toward frontiers of their specializations in electrical engineering, electrophysics or system engineering and who have completed essentially all related course offerings. Readings conducted under guidance of faculty member who is expert in the field, consisting in general of readings in advanced literature. Examination required. Not more than 3 units may be offered toward the master's degree. Prerequisite: degree status.
EL 895-996 Advanced Projects 1 , II

each 0:5:3
Theoretical and experimental projects in various research areas in electrical engineering and electrophysics for advanced graduate students. Projects assigned on basis of specialized interest and preparation of student. Prerequisite: degree status.

EL 897 Thesis for Degree of Master of Science

 in Electrical Engineeringeach 3 units Independent engineering project demonstrating professional maturity, performed under guidance of adviser. Oral thesis defense and formal, bound thesis volume required. Registration of 9 units required (continuous thesis registration required). Prerequisite: degree candidacy.

EL 998 Project for Engineer Degree in Electrical Engineering
each 3 units Compretensive planning and design of electrical engineering project under guidance of faculty adviser. Emphasis on up-todate techniques. Oral examination and formal, bound report required. Scope of project is 6 -12 units by prior agreement with adviser (continuous project registration required). Prerequisite: degree candidacy.

EL 999 Dissertation for Degree of Doctor of

 Philosophy in Electrical Engineering each 3 units Original investigation of electrical engineering problem. Must demonstrate creativity and include features of originality and utility worthy of publication in recognized journal. Candidate must successfully defend disserlation orally. Registration of 24 units required (continuous dissertation registration required). Prerequisite: degree candidacy and passing qualifying examination. Registration beyond twelfth unit requires passing of area examination.
FACULTY

Joal B. DuBow, Professor of Electrical Engineering and Head of Electrical Engineering and Computer Science B.E.E., Polytechnic Institute of Brooklyn; M.S., Princeton University; Ph.D., Case Western Reserve University
Energy technology, electronic materials and devices
Leonard Bergstein, Professor of Electro-Optical Sciences
Ph.D., Polytechnic Institute of Brooklyn
Electro-optics
Henry L. Bertoni, Professor of Electrophysics B.S., Northwestern University; M.S., Ph.D., Polytechnic Institute of Brooklyn
Electromagnetics, acoustics
Joseph J. Bongiomo, Jr., Professor of Electrical Engineering
B.E.E., M.E.E., D.E.E., Polytechnic Institute of Brooklyn Control Systems

Robert R. Boorstyn, Professor of Electrical Engineering B.E.E., CCNY; M.S., Ph.D., Polytechnic Institute of Brooklyn
Computer communication networks, telecommunications

Edward S. Cassedy, Professor of Electrical Engineering B.S., Union College; S.M., Harvard University; Dr. Eng., The Johns Hopkins University Plasmas, power, energy policies

Bernard R.S. Cheo, Professor of Electrical Engineering B.S., Taiwan College of Engineering (Taiwan); M.S., University of Notre Dame; Ph.D., University of California (Berkeley)
Electromagnetics, plasmas, power
Rudolf F. Drenick, Professor of System Engineering
Ph.D., University of Vienna (Austria)
System theory
Leopold B. Feisen, institute Professor
B.E.E., M.E.E., D.E.E., Polytechnic Institute of Brooklyn Propagation and diffraction, optics

Anthony B. Giordano, Professor of Electrical Engineering and Dean of Graduate Studies B.E.E., M.E.E., D.E.E., Polytechnic Institute of Brooklyn
Elecfromagnetics, network theory, microwave networks
Stanley H. Gross, Professor of Electrophysics
B.S., CCNY; M.S., Ph.D., Polytechnic Institute of Brooklyn
lonospheric plasmas and atmospheric physics
Alexander Hessel, Professor of Electrophysics M.Sc., Hebrew University; D.E.E., Polytechnic Institute of Brooklyn Antenna theory

Bruce L. Hicks, Visiting Professor of Computer Science
B.S., M.S., Ph.D. (Physics), California Institute of Technology
Educational applications of computers, computer graphics

Donald F. Hunt, Professor of Electrical Engineering
B.S., University of Pennsylvania

Networks, energy

Melvin Klerer, Professor of Computer Science B.A., M.S., Ph.D., New York University

Programming languages

Frank Kozin, Professor of System Engineering B.S., M.S., Ph.D., Illinois Institute of Technology Stochastic systems

Ludwik Kurz, Professor of Electrical Engineering B.E.E., CCNY; Eng. Sc.D., New York University Communications, pattern recognition, and image processing

Arthur E. Laemmel, Professor of Electrical Engineering B.E.E., Polytechnic Institute of Brooklyn Coding and computer circuits

James T. LaTourrette, Professor of Electrophysics B.S., California Institute of Technology; A.M., Ph.D., Harvard University
Quantum electronics, computer soffware
Enrico Levi, Professor of Electrophysics
B.S. (M.E.), B.S. (E.E.), Dipl. Ing., Technion (Israel);
M.E.E., D.E.E., Polytechnic Institute of Brooklyn Energy conversion

Frank J. Lupo, Protessor of Electrical Engineering
B.E.E., M.E.E., New York University; Ph.D.,

Columbia University
Bioengineering, networks, and systems
Nathan Marcuyltz, Institute Professor
B.E.E., M.E.E., D.E.E., Polytechnic Institute of Brooklyn Nonlinear and turbulent waves

Elt Absalom Miahkin, Professor of Applied Physics Ingenieur, Sc.D., Technion (Israel) Quantum and nonlinear optics, laser-induced fusion

Arthur A. Oliner, Professor of Electrophysics and Director of Microwave Research Institute B.A., Brooklyn College; Ph.D., Cornell University Electromagnetics, microwaves, integrated optics, acoustics

Istvan Palocz, Professor of Electrical Engineering and Electrophysics
Dip. E.E., Docent, University of Technical Sciences (Budapest, Hungary); Ph.D., Polytechnic Institute of Brooklyn
Wave propagation

Athanasios Papoulis, Professor of Electrical Engineering
M.E., E.E., Athens Polytechnic Institute (Greece);
M.S., M.A., Ph.D., University of Pennsylvania Signal theory

Philip E. Sarachik, Professor of Electrical Engineering A.B., B.S., M.S., Ph.D., Columbia University Optimal and adaptive systems

Harry Schachter, Professor of Electrical Engineering B.E.E, CCNY; M.S., Columbia University; Ph.D., Polytechnic Institute of Brooklyn Microwave acoustics and communications systems

Benjamin Senitzky, Professor of Electrophysics
B.E., Ph.D., Columbia University

Optical and semiconductor devices
Sidney S. Shamis, Professor of Electrical Engineering and Associate Dean of Engineering
B.E.E., Cooper Union; M.S., Stevens Institute of Technology
Active networks
Leonard G. Shaw, Professor of Electrical Engineering
B.S., University of Pennsylvania; M.S., Ph.D., Stanford University
Stochastic control, reliability
Jerry Shmoye, Professor of Electrical Engineering
B.E.E., Cooper Union; Ph.D., New York University Antennas, propagation

Martin L. Shooman, Professor of Electrical Engineering and Computer Science
S.B., S.M., Massachusetts Institute of Technology; D.E.E., Polytechnic Institute of Brooklyn Software engineering, system reliability and safety

Edward J. Smith, Professor of Electrical Engineering and Dlrector of Divlsion of Computer Science B.E.E., Cooper Union; M.E.E., D.E.E., Polylechnic Institute of Brooklyn
Computer organization
Leonard Strause, Professor of Electrical Engineering B.E.E., CCNY; M.S., Columbia University integrated circuits

Theodor Tamir, Professor of Electrical Engineering and Electrophysics
B.S., Dipl. Ing., M.S., Technion (Israel);

Ph.D., Polytechnic Institute of Brooklyn
Electromagnetics, electro-optics
Wen-Chung Wang, Professor of Electrical Engineering and Electrophysics
B.S., Taiwan EngineerIng College (Taiwan);
M.S., Ph.D., Northwestern University

Microwave acoustics
Dante C. Youla, Professor of Electrical Engineering B.EE, CCNY; M.S., Now York University Networks, control systems

Frank A. Cassara, Associate Professor of Electrical Engineering
B.S., Rutgers-The State University; M.S., Ph.D., Polytechnic institute of Brooklyn
Electronic circuits, communication systems
Douglas A. Davids, Associate Professor of Elec. trophysics
B.S., M.S., Newark College of Engineering;

Ph.D., The Johns Hopkins University
Microwave acoustics, quantum electronics
Herman Farber, Associate Professor of Electrophysics B.A., Brooklyn College; M.E.E., Polytechnic Institute of Brooklyn
Microwave techniques
Rlchard A. Haddad, Associate Professor of Electrical Engineering and Associate Dean of Westchester Center B.E.E., M.E.E., Ph.D., Polytechnic Institute of Brooklyn Digital filters, power systems

Ronald J. Juels, Visiting Associate Professor of Computer Science
B.E.E., M.S.E.E., Polylechnic Institute of Brooklyn;
D.Sc.E.E., Stevens Institute of Technology

Computer architecture, microprocessor systems
Aaron Kershenbaum, Associate Professor of Computer Science
B.S., M.S., Polytechnic Institute of Brooklyn;

Ph.D., Polytechnic Institute of New York
Computer communications, algorithms

Maurice C. Newstein, Associate Professor of Electrophysics
A.B., Temple University; Ph.D., Massachusetts Institute of Technology
Quantum electronics
Song-Tsuen Peng, Research Associate Professor of Electrophysics
B.S., Cheng-Kung University (Taiwan); M.S., Chiao-Tung

University (Taiwan); Ph.D., Polylechnic Institute of Brooklyn
Electromagnetic theory

Saul W. Rosenthal, Associate Professor of Electrophysics
B.E.E., M.E.E., Polytechnic Institute of Brooklyn

Microwave techniques, bioengineering

Henry Ruston, Associate Professor of Electrical Engineering and Computer Science B.S.E. (Math), B.S.E. (E.E.), Ph.D., University of Michigan; M.S., Columbia University Software engineering, programming, circuit theory

Leo M. Silber, Associate Professor of Electrophysics B.S., University of Massachusetts; M.S., Ph.D., Purdue University
Magnetic materials, plasmas

William T. Walter, Research Associate Professor of Electrophysics
A.B., Middlebury College; Ph.D., Massachusetts Institute of Technology
Quantum electronics, atomic physics, wave-matter interaction

Gerald Weiss, Associate Professor of Electrical Engineering
B.E.E., Cooper Union; S.M., Harvard University;
D.E.E., Polytechnic Institute of Brooklyn

Feedback theory, control instrumentation
Zivan Zabar, Professor of Electrical Engineering
B.Sc., M.Sc., Sc.D., Technion (Israel)

Semiconductor applications, computer simulation of switching circuits, electrical drives

Leo Birenbaum, Research Assistant Professor of Electrical Engineering and Electrophysics
B.E.E., Cooper Union; M.E.E., M.S., Polytechnic Institute of Brooklyn
Bioeffects of microwaves, microwave measurements, electrical machinery

Christodoulos Chamzas, Assistant Professor of Electrical Engineering
Diploma in EE-ME, National Technical Úniversity of Athens; M.S., Ph.D., Polytechnic Institute of New York Digital signal processing
A. David Klappholz, Assistant Professor of Computer Science
B.S. Massachusetts Institute of Technology; M.S.E., Ph.D., University of Pennsylvania
Parallel processing, computer architecture
Szu-Ping Kud, Research Assistant Professor of Electrophysics
B.S., M.S., National Chiao-Tung University, (Taiwan);

Ph.D., Polytechnic Institute of New York
Magnetohydrodynamics
Jamshed H. Mirza, Assistant Professor of Computer Science
B. Techn., Indian Institute of Technology (Kharagpur, India); M.S., Ph.D., Polytechnic Institute of New York Computer architecture, pipeline processing

Norman Rubin, Assistant Professor of Computer Science
B.S., CCNY; M.A., Ph.D., New York University Artificial intelligence, programming languages, compilers

ADJUNCT FACULTY

Hal Bloomberg, Adjunct Professor
B.S., Brooklyn College

Bemard Friediand, Adjunct Professor
A.B., B.S., M.S., Ph.D., Columbia University

Richard Gran, Adjunct Professor
B.E.E., M.E.E., Ph.D., Polytechnic Institute of Brooklyn

Rudolf G.E. Hutter, Adjunct Professor
State Exam, University of Berlin (Germany);
Ph.D., Stanford University
George Karady, Adjunct Professor
Dipl. Eng., Ph.D., Technical University of Budapest (Hungary)

Myron M. Rosenthal, Industry Professor
B.S., CCNY; M.S., Adelphi University

Joel B. Snyder, industry Professor
B.E.E., M.E.E., Polytechnic Institute of Brooklyn

William D. Wade, Adjunct Professor
B.S., University of Missouri; M.S., Ph.D., Purdue University

Ralph Gittleman, Adjunct Associate Professor
B.S., Massachusetts Institute of Technology;
M.E.E., Polytechnic Institute of Brooklyn

Kenneth S. Schneider, Adjunct Associate Professor
B.S., M.Eng., Ph.D., Cornell University

Frederick W. Scholl, Adjunct Associate Professor
B.E.E., Ph.D., Cornell University

Mustapha Acar, Lecturer
B.E.E., Middle East Technical University (Ankara,

Turkey); M.S., Polytechnic institute of Brooklyn;
Ph.D., Polytechnic Institute of New York
Satish K. Gambhir, Lecturer
B.S.E.E., Birla institute of Technology, India;
M.S.E.E., Oklahoma State University; M.S.E.E., Stanford University; Ph.D., Polytechnic Institute of New York

Howard Hausman, Lecturer
B.S., M.S., Polytechnic Institute of Brooklyn

Ert.Wen Hu, Lecturer
B.S., Cheng Kung University (Taiwan); M.S., University of Cincinnati; M.S., SUNY (Stony Brook); Ph.D., Polytechnic Institute of New York

Lee Jacknowh Lecturer
B.A., B.E., M.S., New York University

Alfred Jorysz, Lecturer
M.Sc., Institute of Technology (Vienna, Austria)

William W. Kestenbaum, Lecturer
B.M.E., CCNY; M.E.E., New York University

Daniel A. Mark, Lecturer
B.Eng., Bucharest Polytechnic Institute, Rumania; M.Eng., Power Institute, Ivanovo USSR; D.Eng., Bucharest Polytechnic Institute, Rumania

Bernard Masur, Lecturer
B.A., B.E.E., CCNY; M.S., Polytechnic Institute of Brooklyn; Engineer, Columbia University

Philip M. Paterno, Lecturer
B.E.E., M.E.E., Polytectnnic Institute of Brooklyn
O. James Pfeifer, Lecturer
B.S., Polytechnic Institute of Brooklyn; M.S., SUNY (Stony Brook)

Shetdon J. Rosenberg, Lecturer
B.E.E., M.S., New York University

Sidney N. Smilowitz, Lecturer
B.E.E., M.E.E., CCNY

Rainer Weschke, Lecturer
B.S., M.S., Polytechnic Institute of BronkIvn

EMERITUS FACULTY

Frank E. Canavaciol, Protessor Emeritus
E.E., Polytechnic Institute of Brooklyn; D. Eng. (hon),

Polytechnic Institute of New York
William A. Lynch, Professor Emeritus M.E., M.E.E., Polytechnic Institute of Brooklyn

Emst Weber, Professor Emeritus and President Emeritus Dr. Phil., University of Vienna (Austria); Dr. Techn., Technical University of Vienna (Austria)

ELECTROPHYSICS

Polytechnic offers a program of study leading to the degrees of master of science and doctor of philosophy in electrophysics. The program is intended to prepare students to work at the interface between electrical engineering and physics, where new engineering applications of various physical phenomena are developed. Emphasis is placed on wave propagation and wave interactions with matter, as applied to a wide range of topics. Students entering the program typically have an undergraduate background in electrical engineering or in physics, a strong interest in physical phenomena and/or applied mathematics, and a desire to participate in research. The program is administered by the Department of Electrical Engineering and Computer Science.

The program of study consists of basic courses in wave propagation, electromagnetic theory, and mathematical techniques offered through the Department of Electrical Engineering and Computer Science. In addition, a variety of more specialized courses at both the master's and doctor's levels are offered covering technical areas where there is research and development activity on a worid-wide basis. Traditional areas of active research that are covered include propagation and diffraction of waves, antennas, microwave networks, plasmas and solid-state devices. Areas of modern optics that are covered include quantum electronics, lasers and optical communications. Additional areas are nonlinear wave propagation, ultrasonic waves in solids, planetary atmospheres and waves in the earth's atmosphere. The basic courses are offered yearly on both the Brooklyn and Farmingdale campuses. Specialized courses may be offered on one or the other campus, or in alternate years on the two campuses.

The electrophysics faculty at Polytechnic has made significant contributions in each of the areas cited above and maintains active theoretical and experimental programs in them. Because the electrophysics program is an outgrowth of these research activities, students in the program are exposed to the most current technical developments in each area and can be guided in research at the forefront of the areas. The theoretical effort is supported by extensive computational facilities existing at Polytechnic. The experimental research is carried out in laboratories in Farmingdale and Brooklyn. At Farmingdate, experimental facilities include a 800 -foot antenna range, a microwave anechoic chamber, an ionospheric sounder, laser laboratories, an ultrasonics laboratory devoted to microwave acoustics, a solid-state and millimeter wave device laboratory, and plasma laboratories. The Brooklyn campus has laboratories devoted to modern optics, ultrasonics, magnetic materials and thin films. The thin-film laboratory has extensive facilities for vacuum deposition and integrated circuit fabrication, and a scanning electron microscope.

REQUIREMENTS FOR THE MASTER'S DEGREE

The entrance requirements for the master of science in electrophysics are a bachelor's degree in engineering or science from an accredited institution, with a superior undergraduate record, including undergraduate courses in differential equations, electromagnetic theory, quantum and solid-state physics, and linear systems. Students with deficiencies in these areas may be admitted if they take appropriate introductory courses to remove these deficiencies. Outstanding students are advised to apply for financial aid in the form of research fellowships, teaching fellowships or partial tuition remission.

Course Requirements

1. Three courses from among the following:

EL 551 Electro-Optics I
EL 581 Introduction to Plasma Engineering
EL 611 Signals, Systems and Transforms
EL651 Statistical Mechanics 1
EL 653 Quantum Electronics I
EL 671 Fieids and Waves
9 units
2. Two oneyear sequences, which
may include the above courses
3. Approved electives

A complete course of study, including the choice of the one-year sequences, should be arranged in consultation with an adviser. A master's thesis of 9 units may be included as part of the elective courses. At least 24 of the 36 units must be in courses with EL, EP or CS prefixes.

For graduation, a minimum average of B must be obtained in the required courses (the three selected from the above list, plus those in the two one-year sequences). In addition, an overall average of B or better is required for all 36 units offered toward the degree.

The Electrical Engineering Graduate Student Manual should be consulted for more detailed rules and procedures, including student status, recommended electives and one-year sequences, current areas of research and disqualification for low grades.

REQUIREMENTS FOR THE DOCTOR'S DEGREE

Graduate students who have demonstrated a high degree of scholastic proficiency and have given evidence of ability for conducting independent research may consider extending their studies toward the doctorate.

Admlesion to Program-Admission to the program is based on qualifying examinations which a student usually takes after having completed one year of graduate studies. Successful completion of the master's requirements in electrophysics should provide adequate course preparation for the examinations.

Specific requirements for this degree parallel those for the Ph.D. in EE as described elsowhere in this catalog and in the Electrical Engineering Graduate Student Manual. These include course requirements, guidance committee formation, area examination, foreign language requirement, submission of the bound thesis, etc.

Outstanding students are advised to apply for financial aid in the form of research fellowships, teaching fellowships or partial tuition remission.

Qualitying Examinations-The format for the qualitying examinations is described in connection with the Ph.D. in electrical engineering. Principal areas of concentration for electrophysics candidates are: quantum and statistical mechanics, quantum electronics, electronics, electromagnetics and electro-optics. Current information about examination topics should be obtained from the doctoral adviser.

GRADUATE COURSES

EP 897 Thesis for Degree of Master of Sclence In Electrophysics
 each 3 unhts Independent research project demonstrating professional maturity, performed under guldance of adviser. Oral thesis defense and formal, bound thesls volume required. Reglstratlon of 9 unlts required (continuous thesis registration required). Prerequisite: degree candidacy.

EP 969 Dissertation for Degree of Doctor of Phillosophy In Electrophyaics
each 3 untts Original investigation of electrophysics problem. Must demonatrate creativity and include features of origlnailty and utility worthy of publication in recognized journal. Candidate must successfully defend dissertation orally. Registration of 24 units required (contlnuous dissertation reglstration required). Prerequisite: degree candidacy and passing of qualitying examination. Registration beyond twelfth unit requites passing of area examination.

PARTICIPATING FACULTY

Leonard Bergstein, Professor of Electro-Optical Sciences

Henry L. Bertoni, Professor of Electrophysics
Edward S. Cassedy, Professor of Electrical Engineering
Bemard R-S Cheo, Professor of Electrical Engineering
KunMo Chung, Research Professor of Nuclear and
Electrical Engineering
Leopoid B. Felsen, Institute Professor

Stanley H. Grass, Professor of Electrophysics
Alexander Hessel, Professor of Electrophysics
James T. La Tourrefte, Professor of Electrophysics
Entco Levi, Professor of Electrophysics
Nathan Marcuvitz; Institute Professor
Eif Absalom Mlahkin, Professor of Applied Physics
Arthur A. Oliner, Professor of Electrophysics
István Palócz, Professor of Electrical Engineering and Electrophysics

Harry Schachter, Professor of Electrical Engineering
Benjamin Senitzky, Professor of Electrophysics
Jerry Shmoys, Professor of Electrical Engineering
Theodor Tamir, Professor of Electrical Engineering and Electrophysics

Wen-Chung Wang, Professor of Electrical Engineering and Electrophysics

Douglas A. Davids, Associate Professor of Electrophysics

Hemman Farber, Associate Professor of Electrophysics
Maurlce C. Newstein, Associate Professor of
Electrophysics
Song-Tsuen Peng, Research Associate Protessor of Electrophysics

Saul W. Rosenthal, Associate Professor of Electrophysics

Leo M. SHber, Associate Professor of Electrophysics
William T. Walter, Research Associate Professor of Electrophysics

Leo Birenbaum, Research Assistant Professor of Electrical Engineering and Electrophysics

Szu-Ping Kuo, Research Assistant Professor of Electrical Engineering and Electrophysics

ENERGY PROGRAM

The energy program is an interdepartmental effort administered by the Division of Engineering. Recognizing the multifaceted, interdisciplinary nature of energy problems and studies, the program integrates human and physical resources at Polytechnic to provide cohesive curricular, research and service activities in technological, economic, managerial, social, political and humanistic areas. Thus Polytechnic resources are applied to the solution of global, regional and loca! energy problems through education, research and public service.

GRADUATE PROGRAMS IN ENERGY ENGINEERING AND POLICY

Interdisciplinary programs in energy policy and engineering lead to the master's degree in the various engineering disciplines, operations research and management.

Common to all programs are two interdisciplinary courses:

ES 927	Energy Policy lssues	3units
ES 928	Energy Resources and	3 units

These two courses are cross-listed in all participating departments and are accepted as departmental courses. Students may enter the energy program in one of two ways:
t. Admission through regular departments with admission and requirements determined by the departments for the M.S. degree.
2. Enrollment for a Certificate in Energy Policy and Engineering through a participating department.

DEGREE AND CERTIFICATE REOUIREMENTS

1. Departmental Master of Science Degree (e.g., master of science in mechanical engineering and certificate in energy policy and engineering.)
a. Student must satisfy minimum requirements of master of science program in the department.
b. Student must complete the two required interdepartmental courses, ES 927 and ES 928. Another interdepartmental energy-related course (e.g. ES 929 Selected Topics in Energy) may be substituted for ES 928 with permission of the energy program adviser.
c. Student must complete an additional four courses from among the list of energy electives. At least two courses must be from a single energy elective category; i.e., these four courses may not be from four different categories. The energy elective categories are the broad functional classifications listed under electives.
2. Certificate in Energy Policy and Engineering On completion of ES 927 and ES 928 and two energy electives from a single category, a certificate in energy policy and engineering will be awarded.

TYPICAL PROGRAMS

Chemical Engineering

No.	Required Subjects	Units
CH 631.632	Transport Phenomena I, 11	6
CH 777.772	Chemical Engineering	
	Thermodynamics 1, 11	6
CH 781	Chemical Process Kinetics	3
CH 821	Process Dynamics \& Control*	3
CH 902	Guided Siudies	6
ES 927	Energy Policy Issues	3
ES 928	Energy Resources and	
	Conversion Technology	3
Energy Electives	6	
		36

Civil Engineering
12-18 units of required courses dependent upon
C. E. option selected
ES $927 \quad$ Energy Policy lssues 3

ES 928	Energy Resources and
	Conversion Technology

Energy electives (4 courses) 12
Additional energy electives or other electives
approved by departmental graduate adviser $\frac{6-0}{36}$
$\begin{array}{ll}\text { Economic Systems } \\ \text { OR } 665 & \text { Microeconomic Models* }\end{array}$
OR 666 Macroeconomic Models* 3
OR 674 Economic Moders \& Methods 3
ES 927 Energy Policy lssues 3
$\begin{array}{ll}\text { ES } 928 & \text { Energy Resources and } \\ & \text { Conversion Technology }\end{array}$
Major Electives 12
Electives

Electrical Engineering
$\left.\begin{array}{ll}\text { EL 531 } & \begin{array}{l}\text { Probability } \\ \text { Linear Systems } \\ \text { or } 610\end{array} \\ \text { EL 611 } & \begin{array}{l}\text { Signals, Systems and } \\ \text { Transformers }\end{array} \\ & \end{array}\right\}$

[^8]| No. | Required Subjects | Units | MG 604 | Managerial Accounting | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EL 661 | Studies in Power Systems* | 3 | MG 605 | Statistical Analysis | 3 |
| EL 663 | Electrical Transients in Power | | MG 606 | Managerial Finance | 3 |
| | Systems* | 3 | MG 607 | Marketing Management | 3 |
| EL 665 | Power System Stability ${ }^{*}$ | 3 | ES 927 | Energy Policy issues | 3 |
| EL 666 | Power System Stability II* | 3 | ES 928 | Energy Resources and | |
| EL 671 | Fields and Waves | 3 | | Conversion Technology | 3 |
| ES 927 | Energy Policy Issues | 3 | Energy ele | | 9 |
| ES 928 | Energy Resources and Conversion Technology | | Additional energy electives or electives approved by departmental graduate adviser | | 3 |
| Recommended Electives | | | | | 42 |
| IE 600
 EL 621
 EL 647 | Engineering Economic Analysis | | Aerospace Engineering or Mechanlcal Engineering | | |
| EL 961-2 | Selected Topics in Power 1, 11 and/or electives approved by | 9 | Aeronautics and astronautics, and mechanical engineering (thermal/fluids/energy option) | | |
| | and/or electives approved by departmental graduate adviser | | AM 701 | Thermodynamics ${ }^{*}$ | 3 |
| | | 36 | AM 710 | Convection | 3 |
| | | | AM 740 | Fluid Dynamics | 3 |
| Energy Management | | | AM 971-72 | Seminar in Mechanical and | |
| Required: | | | | Aerospace Engineering | 0 |
| | | 3 | Major area electives | | 12 |
| ES 928 | Energy Resources and Conversion Technology | | ES 927 | Energy Policylssues | 3 |
| | | 3 | ES 928 | Energy Resources and Conversion Technology | 3 |
| Electives: Select two | | | Energy electives | | 9 |
| MG 631 | Theories of Complex | | | | 36 |
| MG 640 MG 664 | Resource Economics* | | Mechanical Engineering | | |
| | Legai Environment of | | (Mechanical analysis and design) | | |
| | Business* | 6 | | | 6 |
| MG 865 | Research, Development and | | AM 601-02 AM 651 | Advanced Dynamics I, II | 6 |
| MG 866 | Technology Management and | | | or | 6 |
| | Technology Management and Policy* | | AM 653-54 | Dynamics of Machines; Mech. | |
| Additional electives approved by | | | AM 971.72 | Vibrations | |
| management division graduate adviser | | | | Aerospace Engineering | 0 |
| | | 24 | Major area electives | | 6 |
| | | 36 | ES 927 | Energy Policy lssues | 3 |
| Industrial Engineering | | | ES 928 | Energy Resources and | |
| IE 611 | Statistical Quality Control* | 3 | Energy electives | | 12 |
| 1E 619 | Production Planning and | | | | 36 |
| | Control | 3 | | | |
| IE 628 | Operations Research: | | Metallurgy | | |
| | Stochastic Models* | 3 | MT 610
 MT 620
 MT 640
 ES 927
 ES 928 | | |
| Major Electives | | 12 | | Metallurgical Thermodynamics
 Plastic Deformation and Fracture | 3 |
| ES 927 | Energy Policy Issues | 3 | | Peactions in Solids | 3 |
| ES 928 | Energy Resources and Conversion Technoiogy | 3 | | Energy Policy Issues | 3 |
| Electives | conversion Technology | 9 | | Energy Resources and Conversion Technology | 3 |
| | | 36 | Energy electivesAdditional energy electives, electives | | 12 |
| | Management | | | |
| | | | | | | | | approved by departmental graduate adviser, and project or thesis | | |
| MG 600
 MG 601
 MG 602
 MG 603 | Manágement Process Organizational Behavior Computers in Management* Economic Environment of Management*
 ive. | 3 | 9 | | |
| | | 3 | | | 36 | | |
| | | 3 | | | | | |
| | | | Nuclear Engineering | | | | |
| | | 3 | NU 601 | Intro. Nuclear Engineering [* | 3 | | |
| | | | NU 602 | Intro. Nuclear Engineering []* | 3 | | |
| - Also energy elective. | | | NU 603 | Nuclear Engineering Lab. ${ }^{*}$ | 3 | | |

NU604 N	Nuclear Engineering Lab. li*	Acceptable Energy Electives				
$\begin{aligned} & \text { NU } 606 \\ & \text { NU } 607 \end{aligned}$	Radiation Protection 3					
	Reactor Licensing, Safety	Energy Conversion				
	and Environment 3	AM 761 AM 769	Energy Conversion Special Topics in Energy	3		
	Energy Policy lssues 3					
ES 928	Energy Resources and Conversion			3		
	Technology 3	AM 763 AM 764 CH 760	Solar Thermal Engineering1			
Energy electives and departmental electives						
	36		Energy Resources, Conversion			
Operations Research			Technology, Distribution and			
			Utilization	3		
IE 600 E	Engineering Economic Analysis* 3	CH 791	Electrochemical Engineering	3		
OR 631 L	Linear Programming* 3	Energy Transfer Processes				
OR 650	Queuing Systems 1 3					
Major electives		AM 711 AM 712 AM 713 AM 715/NU 715 AM 716NU 716 AM 717	Convective Heat Transfer	3		
ES 927 E	Energy Policy Issues 3		Conduction Heat Transfer	3		
ES 928 E	Energy Resources and Conversion		Radiative Heat Transfer	3		
Electives	Technology		Heat Transfer	3		
			Reactor Heat Transfer	3		
			High Performance Heat			
			Exchangers	3		
		AM 718	Multi-phase Flows with Heat			
Transportation Planning and Engineering			Transfer	3		
TR 600 T	Transportation St					
	Characteristics	Environmental Impact of Energy Systems				
$\begin{aligned} & \text { TR } 601 \\ & \text { TR } 630 \end{aligned}$	Travel Demand Forecasting* 3	AM 685 AM 686 AM 751/CE 763	Noise and Acoustics I Noise and Acoustics II			
	Urban and Regional Planning			3		
	Principles Worksop 3					
$\begin{aligned} & \text { TR } 629 \\ & \text { TR } 701 \end{aligned}$	Transportation Workshop		Aerodynamics of the Urban Environment 1	3		
	Management*	AM 752/CE 764	Aerodynarnics of the Urban			
$\begin{aligned} & \text { TR } 750 \\ & \text { TR } 830 \\ & \text { ES } 927 \\ & \text { ES } 928 \end{aligned}$	Transportation Economics 3	CE 741		3		
	Energy in the Transportation Sector* 3		Analysis of Water Quality			
	Energy Policy Issues 3		Systems Analysis of Stream and Estuary	3		
	Energy Resources and	CE 747	Analysis of Stream and Estuary Systems	3		
	Conversion Technology	CE 752	Air Pollution	3		
Energy electives	- $\frac{9}{36}$	CE 753/CH 753	Dispersion of Pollutants in the Atmosphere	3		
		CE 758/CE 752	Air Pollution Engineering			
			Control	3		
		TA 630	Principles of Urban and Regional			
Trensportation Management		TR 631	Planning	3		
		Methods of Urban and Regional				
MG 600	Management Process 3		Analysis in Planning	3		
MG 601	Organizational Behavior 3		TR 640	Environmental Aspects of		
MG 604	Managerial Accounting 3	Tran'sportation Projects		3		
TR 601	Travel Demand Forecasting* 3	CH 756/CE 758				
TR 750	Transportation Economics 3	MO 608	Air Pollution Analysis Air Pollution Effects	3		
TR 751	Transportation Finance* 3	CE 757/MO 637		3		
TR 660	Urban Public Transportation 3					
TR 757	Transportation Management 3	Fluld Energy Systems				
$\begin{aligned} & \text { TR } 830 \\ & \text { ES } 927 \\ & \text { ES } 928 \end{aligned}$	Energy in the Transportation Sector* Energy Policy Issues	AM 718	Multiphase Flows with Heat			
	Energy Resources and Conversion Technology	AM 746	Transter Fluid Dynamics of Rotating			
TM 997Transportation	Thesis in Transportation Managernent 3		Magnetofluid Dynamics	3		
	Management electives _-9	AM 749				
	45	Machinery				
		EL 961 AM 746	Electric Drives Fluid Dynamics of Rotating Machinery	3 3		

Management and Economics of Energy Systems

NU 72才	Economics of Nuclear Power and Radiation	3
MG 603	Economic Environment of	
	Management	3
MG 631	Theories of Complex Organizations	3
MG 664	Legal Environment of Business	3
MG 800	Policy Planning and Analysis	3
MG 805	Research, Development and	
	Management of Innovation	3
MG 866	Technology Management and Policy	3
IE 600	Engineering Economic Analysis	3
IEIOR 620]	Project Planning	
MG 810	and Control	3
IEMG 757/	Technology Transfer to	
SS 675	Developing Countries	3
OR 665	Microeconomic Models	3
OR 666	Macroeconomic Models	3
MG 640	Resource Economics	3
MG/OR 671	Business and Economic	
	Forecasting	3
MG 672		
SS 672	Technological Forecasting	3
CH 611	Unit Processes of Chemical	
	Technology	3
CE 759	Engineering Aspects of Regional and Master Planning	3
AM 765	Energy Conversion and	
	Environmental Control	3
Materials		
NU 726	Metallurgy of Nuclear Reactor	
MT 726	Materials	3
PH 651	Introduction to Solid-State	
	Physics	3
PH 652	Introduction to Solid-State	
	Physics II	3
MT 652	Special Topics in Advanced	
	Engineering Metallurgy II:	
	Nondestructive Testing	3
MT 700	Welding Metallurgy	3
MT 715	Corrosion and Oxidation	
	Mechanisms in Metals	3
CH 917	Introduction to Polymeric	
	Materials I	3
Nuclear Energy		
NU 601	Intro. Nuclear Engineering I	3
NU 602	Intro. Nuclear Engineering II	3
NU 603	Nuclear Engineering Lab.I	3
NU 604	Nuclear Engineering Lab. Il	3
NU 6191	Introduction to Thermonuclear	
EL 667	Power	3
NU 721	Economics of Nuclear Power	3

Plasma and Controlled Fusion

EL 581	Introduction to Plasma Physics
EL 681	Applied Plasma Physics
NU 619/	Introduction to Thermonuclear
EL 667	Power

Power Plant Construction and Enginearing
CE 625
AM 661
CE 627
Structural Dynamics 3
Dynamic Responses of Civil
Engineering Structures
CE 711 Hydraulic Design of Structures
CE 724 Water Resource Planning 3
CE 890 Earthquake Engineering I 3
CE 891 Earthquake Engineering If 3
Limit Analysis of Structures 3
Design Methods for Power Plant
Structures
3
AM 632l
CE 632
Piping Analysis
3
AM 634 Pressure Vessel Analysis 3
Safety, Reliability and Control of Energy Systems

AM 675	Mechanical Servomechanisms I	3
AM 676	Mechanical Servomechanisms II	3
CH 821	Process Dynamics and Control	3
EL617IEI		
OR 685	System Reliability	3

EL 618/IE
OR 686
EL 621
EL 622
EL 647
EL 661
EL 663
EL 665 Sower
EL 666 Power System Stability Analysis II 3
EL 962 Relay Fault Protection 3
NU 607 Reactor Licensing, Safety and Environment
NU 712 Radiation Shieiding 3
IE 611 Statistical Quality Control 3
IE 612 Advanced Quality Control 3
IEJOR 700 System Effectiveness 3
IE $765 \quad$ Human Factors in Engineering Design
IE $775 \quad$ Industrial Safety Engineering 3
System Optimization

IEOOR 614	Modeling of Social Systems $~$	3
IEOOR 615	Modeling of Social Systems II	3
IEOOR 621	Facility Layout and Locations	3
IEOOR 680	System Simulation I	3
IEOOR 681	System Simulation II	3
IEOOR 646	Urban Systems Analysis	3
OR 627	Operations Research Deterministic	
	Models	3
OR 628	Operations Research Stochastic	
	Models	3
OR 631	Linear Programming	3
OR 632	Nonlinear Programming	3
OR 634	Dynamic Programming	3

Thermodynamics, Combustion and Chemical Processes

AM 701	Thermodynamics 1	3
AM 703	Combustion	3
AM 704	Aerothermochemistry	3

CH 742	Design of Solid Waste Processing Systems
CH 771	Chemical Engineering Thermodynamics !
CE 770	Solid Waste Management

Transportation

TR 660 Urban Public Transportation
TR 661 Intercity Passenger and Freight Transportation
TR 830 Energy in the Transportation Sector

REQUIRED COURSES

Registration for these courses restricted to graduate students enrolled in the energy program, except as permitted by the energy program adviser.

ES 927 Enerty Pollcy Issues

21/2.0:3
Review of broad policy problems connected with energy shortages. Development of new energy sources, methods of energy conservation and long-term energy plans. Priorities for energy pollcy options and associated energy research and development projects. Aims: to review essence of issues in order to comprehend total energy policy framework and analytical tools to evaluate changing world, domestic conditions and impact of alternative policy actions.

ES 828 Energy Resources and Conversion Technology

21/20:3
Summary of present energy resources and global energy requirements. Twentieth-century advances in sclence and technology now being applied or soon to be applied to United States energy economy. Attention to principles behind practical devices and to limitations imposed by fundamental laws of physics. Fossil fuel power generation, nuclear fission and fuston, solar, magneto-hydrodynamic, and thermal differential converters. Chemical and mechanical storage, new electrical distribution systems.

ES829 Selected Toples in Energy

21/20:3
Topics of curfent interest: energy economics, energy resources, soclal impact of energy technologies. Available for credit in lieu of ES 928, when offered, as the second required course of the energy program.

PARTICIPATING FACULTY

STEERING COMMITTEE

Edward S. Cassedy, Jr., Professor of Electrica! Engineering and Computer Science Chairperson, Energy Program Steering Committee Policy analysis, plasma research
Irving Cadoff, Professor of Physical and Engineering Metallurgy
Thin film epilaxy, photo voltaics
John R. Lamarsh, Professor and Head of Nuclear Engineering Nuclear engineering
Joachim I. Weindling, Professor and Director of Operations Research Program
Management Division
Mathematical programming, optimum design, economic evaluation

Anthony J. Wiener, Professor and Director of Policy Studies Management Division
Long-range planning, public policy studies, political, economic, and social environment of business. fechnology management and assessment
Raul R. Cardenas, Jr., Associate Professor of Civil and
Environmental Engineering
Environmental engineering
Leonard 1. Stiel, Associate Professor of Chemical Engineering
Thermodynamics and energy conversion systems
Romualdas Sviedrys, Associate Protessor of Social Sciences
Technology forecasting and technology assessment
Richard S. Thorsen, Associate Professor and Head of Mechanical and Aerospace Engineering Solar energy, nuclear reactor safety
William H. Crowell, Assistant Professor of Transportation Planning and Engineering Public finance, economic analysis, management

FACULTY PARTICIPANTS

Martin H. Bloom, Institute Professor Mechanical and Aerospace Engineering Combustion and energy systems
Joel D. DuBow, Professor and Head of Electrical Engineering and Computer Science Synthetic fuel, photovoltaics, hybrid energy systems
Alvin S. Goodman, Professor of Civil and Environmental Engineering
Hydroelectric power, water supply, and facilities for thermal plants, environmental effects of energy systems
Enrico Levi, Professor of Electrical Engineering and Computer Science
Electrical engineering, computer science, energy conversion
Wheeler K. Mueller, Jr., Professor of Mechanical \& Aerospace Engineering
Heat fransfer, thermodynamics, and energy conversion
Pasquale M. Sforza, Professor of Mechanical and Aerospace Engineering Wind Power
Richard A. Haddad, Associate Professor of Electrical Engineering \& Computer Science
Controls, power system stability
Alan H. Molof, Associate Professor of Civit and Environmental Engineering
Environmental engineering, water pollution, and water supply
Zivan Zabar, Associate Professor of Electrical
Engineering \& Computer Science
Power electronics, electric drives
Richard E. Wener, Research Assistant Professor of Social Sciences
Environmental psychology

HUMANITIES AND COMMUNICATIONS

The Department of Humanities and Communications offers an undergraduate degree program with a concentration in journalism and technical writing and another with a concentration in humanistic studies. The department also offers a unique program in specialized journalism leading to an M.S. degree.
in addition, the department plays an essential role in the education of students who are majors in other departments. Today's engineers and scientists must have a solid education in the humanities to prepare them for the complex tasks they face. These tasks call for the ability to make well-reasoned decisions involving human values implicit in technological options, an understanding of the many ways in which human beings have seen and understood both themselves and the natural and social world, and the ability to communicate effectively in a variety of formats.

Thus, no engineer or scientist is as well prepared as he or she needs to be without training in the art of argument through a study of logic and philosophy; exposure to great literature, art and music; and the development of communication skills both written and oral.

UNDERGRADUATE PROGRAM

The nor-major-The department is responsible for the general humanistic education of all Polytechnic students. In the freshman year, all students admitted to the Polytechnic will be placed at the appropriate level in the introductory English sequence. On the basis of SAT verbal scores and an English Composjtion Placement Test administered by the Department of Humanities and Communications, most students will be placed in one of the standard freshman courses (HU 101 or HU 103); some may be exempted from either of these courses and be placed in HU 200, the second required course in the sequence; others may first be required to take a pre-college, introductory course in English (HU 008 or HU 009) with a reduced course foad (a maximum of 14 credits).

After completing HU 101 (or HU 103) and HU 200 (the IS $140-141$ sequence may be substituted for HU 200 and SS 104, the required social sciences course), the non-major is encouraged to complete a sequence of courses in one of the disciplines within the depart-ment-literature, art and music, philosophy, religion,
modern languages or communications-or to put together a combination of courses that will provide a coherent introduction to the humanities or that will comprise a program in interdisciplinary studies crossing departmental lines. Courses in technical writing and public speaking are especially practical for students preparing for a professional career in engineering and science. Advisers in the Department of Humanities and Communications will be happy to help any student work out such a program. (See "Degree Requirements" for more details.)

The major-The Department of Humanities and Communications offers a bachelor of science degree in the humanities with two concentrations: one in journalism and technical writing and one in humanistic studies. Both are flexible programs with a core program of $73-78$ hours, allowing considerable choice of courses in the humanities, modern languages (optional for the concentration in communications), social sciences, mathematics, science and technology; 33 hours of studies in the major concentration; and 15-19 hours of free electives in which majors can pursue an associated interest in scientific and technological subjects, in the social sciences or in a variety of humanities or interdisciplinary studies.

Concentration in Joumalism and Technical Writing

Our graduates have gone into successful careers in journalism, science writing and technical writing. Science and technical witers in particular-writers with the skills of the journalist combined with a strong interest in science and technology-will continue to be in great demand throughout the 1980's. In these fields, professional status and salary are on a par with those of engineers and scientists.

In the concentration in journalism and technical writing, the major will work out a program of studies in consultation with a departmental adviser, using the "Typical Course of Study," below, as a guide. Note that the required courses are listed in sequential order in the "Typical Course of Study." The required distribution of courses is as follows:

Core Program	Credits
Hurnanities	24
Modern Languages (or HU electives)	12
Social Sciences	18
Mathematics, Science and	$19-24$
Technology	$73-78$
Concentrated studies in major	33
Free electives	$15-19$
Total credits required for graduation	-126

Concentration in Humanistic Studies

In the humanistic studies concentration, the major will work out a program of studies in consultation with a departmental adviser. Here, depending on the student's vocational goals, the concentrated studies may be in such fields as English, American and comparative literatures, modern janguages, philosophy and religion or general humanistic studies. Students who wish to obtain certification for teaching in public schools in the New York City area should plan to take the necessary education courses at another institution. Credit will be given for these courses as free electives in meeting degree requirements. The humanities major will find the department most helpful in providing individualized study and academic and career guidance.

Each program of studies will be designed by the student in close consultation with the faculty adviser and with the approval of the head of the department. All majors must satisty the following requirements, however:

Core Program	Credits
HU 101 College Composition	3
HU 200 Introduction to Literature	3
HU 348 Great Philosophers	3
HU 371 Understanding of Music	
HU 382 FineArts 1	3
HUelectives	12
Modern Languages	12
SS 101 Main Themes in Western	3
SS 104 Main Themes in	
Contemporary History	3
SS electives	12
MA 091-092 Principles of Math. I, II \dagger	8
Science electives	11.16
	73.78
Concentrated studies in major	33
Freeelectives	15-19

Total credits required for graduation

The dual major-A number of students elect to pursue a dual major leading to two undergraduate degreesone in humanities with a concentration in journatism and technical writing and another in engineering or science. In addition to completing aill requirements for the degree in engineering or science, the student must complete 33 credits of communications courses in the Department of Humanities and Communications. These courses must be approved by a departmental adviser.

Interdisciplinary Studies-The Department of Humanities and Communications has initiated a series of courses in interdisciplinary studies, taught jointly with the Department of Social Sciences. For details of this program, see interdisciplinary studies, page 147.

GRADUATE STUDY

Specialized Joumalism

To be eligible for admission as a graduate student specializing in science, technical and financial writing and journalism, an applicant must hold a baccalaureate degree or its equivalent from an acceptable institution of higher learning. The department admits students holding undergraduate degrees in the humanities, journalism, engineering, the sciences and the social sciences.

Applicants are expected to have a good command of English and should have taken as undergraduates at least one semester of collegelevel mathematics and one year of college-level science (to be met by any combination of courses in biology, chemistry, physics, geology, geography, engineering and history of science). Applicants lacking any of these courses may be matriculated on a provisional basis-so long as they meet all other requirements for admission-but will be required to take undergraduate courses to fulfill the basic requirements for admission. No graduate credit will be given for such undergraduate courses taken to meet deficiencies.

In general, applicants should have a minimum undergraduate grade point average of 3.0 from an accredited college or university. However, candidates with a lower grade point average will be considered if they have demonstrated success in some area of professional writing. Others with a lower grade point average may be admitted as provisional candidates. Applicants are not required to take the Graduate Record Examination.

Typical Course of Study for the
 Bacheior of Science Degree in the Humanlties with a Concentration in Joumalism and Technical Writing

Freshman Year

First Semester		Hours/Week	
No.	Subject	Cl .	Lab. Cr.
HU 101	College Composition	3	3
	Communjcations elective	3	3
	ML (or HU) elective	3	3
SS 101^{*}	Main Thernes in Western		
	Civillzation	3	3
MA $091{ }^{\dagger}$	Principies of Math. 1	4	4
PE 101	Physical Education 1		20

Second	Semester
No.	Subject
HU 200*	Introduction to Literature
	Communications elective
	ML (or HU) elective
SS 104*	Main Themes in Contempora
	History
MA 092	Principles of Math $1!$
PE 102	Physical Education II

Hours/Week	
Lab. $\begin{gathered}\text { Cr. } \\ 3\end{gathered}$	
	3
	3
	3
	4
2	0
	16

Sophomore Year				
	Communicatons elective	3		3
	HU elective	3		3
	ML (or HU) elective	3		3
	Soc. Sci. elective	3		3
	Sclence elective ${ }^{\dagger}$			2-4
PE 103	Physical Education 111		2	0

	Communications elective	3		3
	ML (or HU) elective	3		3
	Soc. Sci. elective	3		3
	Science elective ${ }^{\dagger}$			3-4
	Free elective			3
PE 104	Physical Education IV		2	0

Junior Year		
Communications elective	6	6
HU electives	6	6
Science elective		
Free elective		$0-4$
		$15-19$

Senior Year

Communicatlons elective	6	6
HU elective	3	3
Soc. Sci. elective	3	3
Free electives		$3-6$
		$15-18$

Communications elective	$\mathbf{3}$	3
HU elective	3	3
Soc. Sci. elective	3	3
Science elective		$3-4$
Free elective		3
		$15-16$

HU 150 Special Projects in

Communications	3	3
Communications elective	3	3
HU eiectlve	3	3
Free electives		$\frac{6}{15}$

Total credits required for graduation: 126

${ }^{\circ}$ IS 140.141 may be taken in place of HU 200 and SS 104 . See the Humanities and Social Sctences Requirements page 23. Humanities majors may substitute IS 140 or IS 141 for SS 101.			LS 101.102	General Biology i, II	8
			PH 091-092	Concepts of Contemporary	
				Physics 1 , It	B
			or		
\$The sequence MA 101-102 (Calculus I, II) is an acceptable substitute for MA 091-092. For sclences electlves, two of the following sequences are to be chosen, though others may be acceptable to the department:			PH 101.102	introductory Physics 1, is	7
			CS 100	Intro. to Computer Programming	2
			CS 119 and	Intro.to Programming	3
CM091-092 of		Credits	IE 200	Concepts ot Mod. Technology	3
	Princlples of Chemistry $\mathrm{t}_{+} \mathrm{H}$	6	or		
			IE314	Mdig. of Soc. Systs. 1	3
CM 101/111- CM 10\%/112		6			

FIELDS OF SPECIALIZATION

Financial Reporting

Financial and business reporting calls for the professional journalist to write business and financial news developments and trends for both the knowledgeable businessman and market analyst as well as for the general public. The writer should have a solid background in economics and a clear understanding of business and financial concepts and terminology (including the workings of the various exchanges) in order to report and interpret developments accurately and understandably. Clear, crisp, concise writing is a must.

Trade-Magazine Joumalism

Trade-magazine journalism entails writing and editing news and feature articles for both technical and mar-keting-oriented publications serving a particular industry. Such publications may be owned by independent publishing companies, professional societies or large corporations.

Medical and Science Reporting

Medical and science reporting offers opportunities in several fields: on professional magazines serving physicians, nurses and other technical and scientific personne;; on the news staffs of print and broadcast media; on public relations staffs of pharmaceutical houses and major hospitals, medical schools and research centers; in the writing departments of major corporations; and in textbook editing. In addition to having the ability to write clearly and succinctly, the professional medical and science writer and editor should have a sound background in the sciences.

Industrial Advertising and Public Relations

Industrial advertising and public relations are concerned with the promotion of a corporation's products and capability to sell such products to industrial clients rather than to the general public. Industrial advertising involves copy-writing, choosing graphics, selecting media, organizing ad campaigns and performing market research. Those entering this profession work as copywriters, account executives, advertising managers and media directors.

Industrial public relations has the same overall goal as industrial advertising-to promote a positive corporate image to industrial clients. Public relations workers issue news releases on new products and technological advances to the trade and business press serving their client's industry, hold press conferences to announce new products and/or technology developed by the client company, prepare feature articies on the company's products for publication in trade maga-
zines and technical journals, write speeches for top engineering and management personnel and prepare corporate literature (product brochures, annual reports, house organs and other technical and semi-technical material) for dissemination to corporate customers.

Technical Writing

Technical writers-also referfed to as publications engineers and engineering writers-gather, organize, write and edit material of a technical and scientific nature for management and technical personnel within their own company as well as for customers and prospective customers. Such information takes a variety of forms: proposals to the federal government and to other corporations for primary and sub-contract work, progress reports on government-sponsored programs, manuals for use by customer-service and maintenance personnel, corporate-capability brochures and technical and scientific news releases. In addition, the technical writer may be called upon to write speeches and trade-magazine articles for the company's scientists and engineers.

REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE

The M.S. degree requires 36 units of graduate work. Eighteen of these units are to be taken in required courses. All students must take JW 605 (Libel Law and Press Ethics), JW 701 (Specialized Project in Professional Writing) and four courses (12 units) selected from the following list in consultation with an adviser:

Units
JW 600 introduction to Specialized Journalism 3
JW 601 Styie for the Professional Writer 3
JW 602 Proposal Writing 3
JW 603 Reporting on Science, Technology \& Medicine 3
JW 604 Graphics and Production Techniques 3 JW 606 Oral Technical Presentations

The remaining 18 units are to be taken in elective courses. Normally, students select electives from among the remaining graduate courses offered in the department. But students who wish to enhance their scientific and technical knowledge may take a maximum of nine credits of graduate courses in other departments of the Institute. Approval for this option must be given by the head of the department.

Elective courses are usually conducted as workshops, providing students with the types of writing and editing assignments they would receive were they actually working in the field.

While students select their individual programs in consultation with an adviser, the department strongly recommends that they select most of their electives in one of the five specializations listed below.

		Units
Financial Reporting		
JW 620	Financial and Business Reporting	3
JW 621	Reporting and Editing for the Business Press	3
JW 622	Writing Copy for Industrial Public Relations	3
JW 623	Publications Management and Budgeting	3
JW 701	Special Projects in Professional Writing	3
Trade-Magazine Joumalism		
JW 620	Financial and Business Reporting	3
JW 621	Reporting and Editing for the Business Press	3
JW 622	Writing Copy for Industrial Public Relations	3
JW 624	Writing Product-Information Copy	3
JW 701	Special Project in Professional Writing	3
Medical JW 603	d Science Reporting Reporting on Science, Technology and Medicine	3
JW 621	Reporting and Editing for the Business Press	3
JW 625	Advanced Medical Reporting	3
JW 626	Medical Public Relations	3
JW 627	Writing Copy on Pharmaceuticals and Drugs	3
JW 701	Special Project in Professional Writing	3
Industrial Advertising and Pubilc Relations		
JW 621	Reporting and Editing for the Business Press	3
JW 622	Writing Copy for Industrial Public Relations	3
JW 624	Writing Product-Information Copy	3
JW 628	Writing Industrial Advertising Copy	3
JW 629	Writing the Marketing Report	3
JW 701	Special Project in Professional Writing	3
Technical Writing		
JW 603	Reporting on Science, Technology and Medicine	3
JW 622	Writing Copy for Industrial Public Relations	3
JW 624	Writing Product-information Copy	3
JW 630	Basic Technical Report Writing !	3
JW 631	Basic Technical Report Writing 11	3
JW 632	Writing Technical Manuais	3
JW 701	Special Project in Professional Writing	3

CERTIFICATE PAOGRAM IN A FIELD OF SPECIALIZATION

A certificate in Specialized Journalism is available to students completing five courses with a grade of B or higher. The courses must be taken in a prescribed sequence worked out with an adviser. Students enrolled in the certificate program must meet the same rigor-
ous standards of performance required of those work. ing for an M.S. degree. At any time during enrollment, of following the awarding of the certificate, students in this program may transter into the master's degree program providing that their performance has been satisfactory and that they meet the standards for admission set by the department. Transfer into the master's program, however, may not mean automatic acceptance of every course students have taken while working toward the certificate. Acceptance of credits will depend on the area of specialization in which students plan to work for the degree.

ENGLISH AND HUMANISTIC STUDIES AND MODERN LANGUAGES

Advanced courses and seminars in the humanities will be offered from time to time for graduate students in the sciences, engineering and the social sciences. HU 605 (Report Writing) is regularly offered by the department. Some departments permit graduate students to construct a minor in the humanities to fulfill part of their requirements for an advanced degree; advisers in the Department of Humanities will be happy to recommend appropriate courses for such a minor.

UNDERGRADUATE COURSES

INTRODUCTORY ENGLISH SEQUENCE

HU Oce Reading and Writing in English as a Second Language

 $6: 100$ English as a second language at the high-intermediatelevel. Concentration on development of grammatical control in writing and on improved comprehension of collegelevel texts. Practice in listening and speaking; intensive preparation in language skills for academic and professional purposes. Graduate students may register with parmission of department. Admission by placement examination.HU009 Introductory Composition \quad 6:00:
Intensive course in reading comprehension and composition skills for native speakers of English who have not been adequately prepared for college composition. Emphasis on development of control over standard wiften English and fluency in wrlting. Admission by placement examination.

HU 101 College Composition
3:0:3
Techniques of effective communication in English. Essay wrlting, editing, proofreading. Emphasis on fluency, flexibility, precision and imagination in writing and thinking. Introduction to use of source material in writing. Admission by placement examination.

HU 103 College Compoetiton in Engllsh

 as : Second Language$6=03$
Advanced English as a second language. Freshman composition skills for non-native speakers of Engllsh. Techniques of effective communication in Engllsh. Essay writing, editing, proofreading. Emphasis on fiuency, grammaticality and precision in witing. Introduction to use of source material In writing. Admission by placernent examination.

HU200 Introduction to Literature $3.0: 3$
Study of works of poetry, fiction and drama that illustrate prevailing themes and conflicts of Western literature. Course also provides advanced work in more structured forms of writing: critical analysis, formal report, research paper. Some sections may be devoted to special thernes. Prerequisite: HU 10 or or HU 103 or advanced placement.

Please Note: HU 200 or its equivalent is a prerequislte for all undergraduate HU courses listed below except for HU 105 (PTe requilite: HU 101 or HU 103), KU 107 and HU 121 (no prerequisite), and a few courses with more advanced prerecuistes as lifted.

COMMUNICATIONS

HU 105 Advanced Composition
3:0.3
Intensive training in lucid expository writing. Emphasis on gathering and organization of factual material into larger units of composition. Methods of research and use of library. Topics based on models of expository prose. Long paper.

HU 108 Wrting for Publication: The Magarine Articie $\quad 3003$ Emphasis on developing the student's interviewing and writing skills to produce a medium-to-long length magazine article. With instructor's help, students develop a story idea on a technical or non-technical subject, carry out the necessary library research and personal interviews and write the piece for a specific publication. Students are encouraged to publish their work, although this is not a specific course requirement. Students also examine editorial practices of various popular, business and teohnical magazines and learn how successful magazine articles are put together.

HU 107 Workshop in Joumalism

2:3:3
intensive training in writing for and producing publications under pressure of deadlines. Researching, organizing, writing and laying out news and feature articles (technical as well as non-technical) for newspapers and magazines. Also work on graphics. Laboratory work in coping with everyday editorial problems involves helping to write, edit and produce student publications of the institute.

HU 108 News Writing

3.0.3

Application of good writing to journalistic practice. Workshop to guide student in all basic news writing techniques. Writing of leads. Style and structure of body of news storles. Methods of news gathering. Writing of different types of news storiesmeeting, apeech, interview, human interest, interprelation.

HU 109 Feature Wrting

30. 3

Theory and practice of writing short or moderate-length magazine articie on general subjects. Principles and practicea of writing in readable style. Guidance in selecting interesting topics, in market study, in slanting, in dramatizing, in outlining and witting minfmum of three articles.

HU110 Basic Report Wrting I

$3 \times 0: 3$
Application of fundamentals of report writing to short, informal papers written by scientists and engineers in actual business situations: technical correspondence, memoranda, trip reports, periodic reporls and new-product information sheets. Emphasis on writing summaries, process ad technical descriptions, instructions, analyses. Attention is given to effective style, organization of material and mechanics. Students learn to coordinate tables, graphs and other illustrative matter with textual matter.

HU111 Bastc Report Writing it

3:0:3
Intensive practice in writing the longer technical forms commonly used in industry. Emphasis is given to writing technical proposals, sections of manuals, tetter reports, formal reports,
technical sales literature, and semi-technical and technical articles for trade journals.

HU 112 Advanced Copyediting Techniques

3:C23 Course designed to improve the student's editorial skills through intensive practice in writing headlines, decks and subheads for both general and industrial publications and through assignments in editing, revising and rewriting copy intended for a variety of publications. Emphasis on writing leads and in reorganizing garbled copy. Newspaper and magazine page layout and makeup. Prerequisite: HJ 105.

HU 113 Wrting for Advertising and Pubile Relations

3.0 .3

The principies of writing effective advertising copy and publicity releases with an emphasis on the industrial side. Students witte product ads, brochure copy, product data sheets, news releases, short articles for trade jousnals, copy for house organs and speeches. Course covers the preparation and implementation of a typical advertising campaign and the arrangement of a press conference. Attention is given to layout of ad copy and to accompanying color, design, typographic and illustrative features. Prerequisite: HU 105.

HU 114 Llbel Law and Ethlcal Issues in Joumalism
30:0:3 Introduction to what libel is and how the writer can avoid its many pitfalls. Course covers both the complete and partiel defenses raised during libel suits and the possible damages awarded, the principle of "fair comment and criticism," criminal and civil libel, and one's right to privacy vs. the public's "need to know." The course also takes up many of the ethical issues facing journalists and other writers today, issues such as writing about new products and technology believed to be defective or hazardous, pornography and the courts, writing in good taste, shield laws, gag orders and copyright.

HU 115 Reporting and Writing about

Sclence and Technology
3:0:3
Students will leam how to interview scientists and engineers and how to present the information obtained in a format understandable to the layman. They will write both news and feature stories, and will be encouraged to publish their better pieces.

HU 121 Puble Speaking

30.3

Training and practice in speaking before a group, preparation of materfal for oral presentation, extemporaneous speaking, individual criticism by instructor and fellow students.

HU130 Creative Writing 1
3:0:3
An introduction to the an and craft of writing poetry, fiction and drama. Students encouraged to experiment with all genres and discover where their talents lie. Emphasis throughout on students' own work. Weekly written assignments discussed and criticized in class.

HU 13 Creatlve Writing II

3.0:3

An advanced course In the art and craft of writing poetry, fiction and drama. Application of individual writing talents to specific forms. Development of intelligent critical responses to all forms of literature. Weekly written assignments, plus one longer writing project: a story, play or small coliection of poems. Prerequisite: HU 130 or permission of instructor.

HU $150-154$ Special Projects in Communications each 300.3 Independent work in an area of interest in the field of communications selected by the student in consultation with instructor. For majorsonly.
HU 1F Special Topics in Jorimalism
$30: 3$
Courses of tpeeviek in in inutrnalism will be offered from time to time by the staff of the department or by visiting scholars. The specific titles and prerequisites will be announced prior to registration. May be repeated for credit.

HU 180 Wrining the News for TV and Radio

3:0:3
Intenslve practice in the special format required for writing news for TV and radio. Students will rewrite newspaper articles and wire copy in the style necessary for these formats. They will also practice broadcasting the newe and writing newscasts under pressure. Prerequisites: HU 108 or permission of instructor.

LITERATURE

(See aleo Literature In Tranalation: ML 311-313, ML 318-319, and interdecipilnary studies program.)

HU 201 Lherature of Westem Cwillzation I
3:0:3
Sources of modem ideals and values in ancient world: Greek drama, Plato, Lucretius, Bible, etc.

HU 202 Lterature of Westem Civilization II** 3:0:3
Sources of modern ideals and values from Middle Ages to 18th century: milracle plays, Shakespeare, Milton, Voltalre, etc.

HU 203 Literature of Western Civilization III*
3:0:3
Intellectual and cultural, moral and spiritual values of modern and postmodem world, examined in novels, drama, philosophy, poetry. Readings in Ilterature of Romantic revolt, Goethe, Dostoevski, Brecht, Sartre, Solzhenitsyn, American and Europeen verse.

HU 211 English Llterature from Beowulf to 1800* $3: 0.3$
Great tradition of English IIterature from Beowulf through Chaucer, Elizabethans and Jacobeans to 1800.

HU212 Engllsh Literature from 1800 to Present 3:0:3
Great tradition of Engllsh literature from Romantics to present (Wordsworth, Byron, Dickens, Tennyson, Shaw, Conrad, Beckett and others).

HU213 Sclence and Lterature
$3: 0: 3$
With emphasis on modern period, examination of the literary merits of scient|flc literature and imaginative literature devoted to and affected by science. Readings in such authore as Charles Darwin, T.H. Huxley, Bertolt Brecht, SInclair Lewis, Arthur Koestler, Heinar Klpphart, James Watson, Kurt Vonnegut, Iseac Asimov.

HU222 Shakespeart 3:0:3
Representative tragedies, comedles, histories. Cultural, social and Itterary Influences. Textural problems, recent criticism. Elizabethan theatre.

HU 251 Amercean Literature to 1880

3:0:3
Puritan and neoclassic periods through romantic movement and rise of realism. Background and thought of Jonathan Edwards, Paine, Irving, Poe, Hawthorne, Emerson, Thereau, Whitmen, Twain, James and other representative writers.

HU252 American Literature from 1820 to Present 30:3 Mejor Americen writers from 1880. Background and thought of Crane, Dreiser, Aoblnson, Frost, Millay, Sandburg, O'Nelli, Cather, Wharton, Lewis, Hemingway, Fitzgerald, Wolfe, Faulkner.

HU 258 American Thought

3:0.3
Background, development and dynamics of American thought. Protest and conformity, individualiem and collectiviam, sentlmentality and pragmatlsm. Americans as moral egents, as revealed in mass media and in readings in litarature and philosophy.

HU 262 Comtemporary American Novel 3:0:3
Contemporary American novel as affirmative expression of the
human situation. Technical and philosophical analysis of such writers as Golding, Salinger, Updike, Roth, Vonnegut, Clarke, Bellow and others.

HU 284 The Short Story

3:0-3
Theme, structure, technique of short stories by writers as diverse in style and philosophy as Chekhov, Twain, O. Henry, Mansfield, Lardner, Faulkner, Thurber and Hemingway.

HU 272 Contemporary American Poetry*

 3:0:3Contemporary American poetry as affirmative exprassion of the human sltuation. Technical and philosophical analysis of such poets as Rexroth, Roethke, Patchen, Stafford, Berryman, Lowell, Levertov, Bly, Creeley, Ginsberg, Kinnell, Merwin, Wright, Levin, Plath, Snyder.

HUzst Comedy

3:0:3
Nature and uses of humor as viewed by playwright, psychologlst, philosopher. Theories of comedy from Aristotle to Freud. Plays from Aristophanes and Moliers to Giraudoux and Shaw. Humor from Tarlaton to Chapiln and Benchley.

HU 293 Modern American Drama* 30.0.3

Modern American drama, with emphasis on affirmative or negative statements regarding man's fate in the universe. Technical and philosophical analysis of works by O'Neill, Miller, Anderson, Hellman, Williams, Inge, Albee, etc. Discussions of selected, contemporary American films.

HU291 Short Fiction
3:0:3
A study of major writers of the novella (long short story) form. This course emphasizes the relationship between literature and ideas. Among the authors to be considered are Saul Bellow, Aibert Camus, Joseph Conrad, Ernest Hemingway, Franz Kafka, Thomas Mann, Alexander Solzhenitsyn, Nathaniel West. Class discussions, cinematic presentations of some of the works and theatre visits are integral parts of the course.

HU295 Uterary Interpretation and Criticism* 300:3
Llterary crlticism from Plato and Aristotle through Dryden and Pope to T.S. Eliot. Principles of classicism, romanticism, realism, existentlalism. Aesthetic problems of literary genres. Explication and Interpretation of texts.

HU 297 Engllsh Language*
3:0:3
History and development of English language. Readings in old, middle and ealy modem Engllsh. Emphasis on middle English, as exemplified by selectlons from Chaucer's Centerbury Ta/es.

PHILOSOPHY AND COMPARATIVE RELIGION

HU 341 Introduction to Phllosophy
3-0,3
Critical Inquiry into problems, methods and terminology of philloeophy through comparative study and discussion of selected philosophical texta.

HU 344 Logle and Scientific Method 3:0:3
Basic princlples and techniques of correct reasoning in sciences and daily life. Verletias of deductive and Inductive Inference, the use and mleuse of language in reasoning. Emphasls on detection of common fallacies.

HU 346 Great Phslosophers
3:0:3
Fundemental ideas of central figurea In hlatory and philosophy from Greece through 18th century. Particular emphasis on philosophles of Plato, Aristotle, Descertes, Hume, Kant.

HU349 Recent Philosophy
3.0:3

Major phllosophic ideas, thinkers, movements of 19th and 20th centuries. Emphasis on pragmatism, empiricism, existentiallsm, other currently influential schools of thought.

HU352 Philosophy of Science

3:0:3
Examination of central problerns in theory of science and scientific methodology. Relation between science and philosophy; scope and objectives of natural sciences, role of mathematics in science; observation and experimentation; laws, theories, explanations; causality and induction.

HU 354 Social and Polltical Phillosophy*
3:0:3
Examination of phifosophical and ethical foundations of divergent sociopolitical theories and systems. Analysis of such concepts as freedom, power, equality, tights, etc., as they appear in thought of leading exponents of communism, capitalism, socialism, fascism, democracy.

HU 363 Comparative Religion I*
30:3
Religion of primitive peoples, Egyptians, Greeks, Romans, Germans. Four Ilving religions: Judaism, Zoroastrlanism, Christianity, Islam. Basic texts. Religious art and music.

HU364 Comparative Religion II*
30:3
Religions of Far East: Hinduism, Jainism, Buddhism, Sikhism, Confucianism, Taoism, Shintoism. Basic texts including Tao Te Ching, Analects, Bhagavad Gita. Religious art and music. Contrasts between Western and Eastern modes of thought.

MUSIC AND FINE ARTS

H 371 Understanding of Music
 3:0:3

Aclive, intelligent listening to masterpieces of Western music from its origins through Bach, Beethoven, and Brahms. Major musicai forms: concerto grosso, fugue, sonata, symphony, concerto, music drama, tone poem. Analysis of orchestra scores. Paratlel trends in other arts and thought. A look at the changes in the social role of music.

HU 375 Modern Music
3:0.3
Music from 1850 to present: Wagner, Strauss, Mahler, Debussy, Stravinsky, Ives, Schonberg, Berg, Weber, Varese. Revolt against romanticism; breakdown of traditional tonal-harmonic system. Polyharmony, polytonality, pantonailty, melodic fragmentation, aleatory and electronic music as expressions of the 20th century. A look at jazz, modern popular and music of other cultures.

HU 382 Fine Arts I

3:0.3
Historical and analytical study of Western architecture, sculpture, painting. Egyptian, Greek, Roman architecture and sculpture. Gothic and Renaissance art. Paraflel trends in other arts.

HU 383 Fine Arts II*
Historical and analytical study of Western architecture, sculpture, painting from 1600 to present. Baroque, necclassic, romantic styles. Revoit against romanticism and quest for new artistic, decorative and tectonic forms to express contemporary civilization.

HU 389 Art of Asin*
3:003
Architecture, sculpture, painting as cultural, soclal and rellgious expressions of Indie, China, Jepan, Southeast Asla and islemic world. Comparisons between Oriental and Occidental arts as modes of thinking and feeling.

SPECIAL TOPICS

The following special topics courses will be offered from time to time by the staff of the department or by visiting scholars. The specific titles and prerequisites will be announced prior to registration. May be repeated for credit.
HU 300 Special Toples in Humanities
HU 301 Special Toples in Literature
$350: 3$
HU 302 Special Toples in Phillosophy
3:0:3

MODERN LANGUAGES
 GERMAN

ML 111 German I: Foundation Course
3:0:3
For students who have had no previous training in German. Audiolingual emphasis on developing proficiency in reading, comprehension, speaking. Early practice in reading original German prose and representative poems.

ML 112 German II

3:0:3
Continuation of basic foundation provided by course ML 111. Reading of original German prose; selections from Hesse, Kastner, Zweig, others. Prerequisite: ML 111 or equivalent.

ML 113 German ili: Readings in German Literature Since 1800
 3:0:3

Selected reading and discussion of significant works in prose, lyric, poetry and drama to acquaint student with outstanding writers, ideas, movements in German literature. May be taken by students who have had secondary school training in German. Prerequisite: ML 112 or equivalent.

ML 114 Gemman IV

3:0:3
Continued selected reading of significant German writing with critical and aesthetic evaluation. Also selected readings in philosophical and scientific subjects. Practice in conversation. Prerequisite: ML 113 or equivalent.

ML 115 Conversation and Composition*
3:0:3
Spoken German with particular attention devoted to idiomatic expressions; compositions with training in syntax and style. Prerequisite: ML 114 or equivalent.

ML121 Sclentifle Germanl*

3:0:3
Introductory course designed for students who wish to acquire facility in translation of scientific material from German into English. Involves introduction to fundamentals of grammar, problems of syntax and idioms, with emphasis on scientific terminotogy. May not be offered in fulfitment of any language sequence or as a humanities elective.

ML 222 Sclentific German II* 3:0.3
Continuation of ML 121. Reading materlal selected from periodical and technical journals covering several fields in science and engineering. May not be offered in fulfiliment of any language sequence or as a humanities elective. Prerequisite: ML 121 or equivaient.

ML 213 German Drama from 1800 to Present*
3:0:3
Major 19 th-century dramatists, Including Hebbet, Kleist, Grillpazzer, Hauptmann. Background, analysis, interpretation of German drama of 20ih century. Lectures, readings and reports. Prerequisife: ML 114 or equivalent.

ML214 Conternporary German Literature*

 3:0:3Study of 20th-century German writers and Ilterary movements. Lectures, readings, reports. Prerequisite: ML 114 or equivalent.

ML215 Goethe's Faust, Part !*
3:0:3
Background and genesis of Gcethe's drama. Reading and discussion of Part 1, examining its aesthetic, moral, ethical values. Prerequisite: ML 114 or equivalent.

ML218 Goethe's Faugt Parl II*

3:0:3
Reading and discussion of Part $I t$, examining its modern cultural implication. Consideration of Goethe's contribution to field of science. Prerequisite: ML 215.

ML 217-218 German Thought from Kant to Present 1,11*

each 3:0:3
Traces course of significant intellectual currents in writings of
philosophers, scientists, poets, social critics. First semester discussion on period from Kant to Nietzsche, second semester on period from Nietzsche to present. Readings in German and English. Prerequisite: ML 114 or equivalent.

ML2zo German Civilization*

3:0:3
Cultural and political history of Germany with discussions of physical and poititical geography, art, music, religion, philosophy, education, the social and economic structures. Prerequfsite: ML 114 or equivalent.

FRENCH

ML 131 French :: Foundation Course
 3.0:3

For students who have had no previous training in French. Audiolingual emphasis on developing proficlency in reading, comprehension, speaking. Early practice in reading original French prose and representative poems.

ML132 Frenchil
3n-3
Continuation of basic foundation provided by ML 131. Reading of modern French prose and poetry of intrinsic literary value. Prerequisite: ML 131 or equivalent.

ML 133 French III: Readings In French

 Literature Since 18003:0:3
Selected reading and discussion of significant works in prose, lyric poetry, drama to acquaint student with outstanding witers, tdeas, movements in French literature. May be taken by students who have had secondary school training in French. Prerequisite: ML 132 or equivalent.

ML 134 French IV
3:0:3
Continuation of ML 133. Reading of mature prose in cultural, philosophical, scientific subjects. Practice in conversational French. Prerequisite: ML 133 or equivalent.

ML 135 Conversation and Composition* 3:0:3
Spoken French with particular attention to idiomatic expressions; composition with training in syntax and style. Prerequisite: ML 134 or equivalent.

ML 235-238 French Thought From Rabeials to

 Sartre 1, $1{ }^{*}$each 3:0:3
Traces course of two major currents in French thought: Ifberalism and traditionalism. First semester discussion on Rabelais, Montaigne, Descartes, Pascal, Rousseau, Voltaire, the Encyciopedtsts. Second semester on Joseph de Maistre, Baizac, Michelet, Comte, Taine, Renan, Bergson, Sartre, Marttain, LeviStrauss. Readings in French and English. Prerequisite: ML 134 or equivalent.

ML237 Contemporary French LIterature*

Examination of varied currents of 20th-century literature as exemplified in authors fanging from Proust to Camus, Sartre, the exponents of the nouveau roman. Lectures, readings, reporis. Prerequisite: ML 134 or equivalent.

ML 238 French Civilization*

3:0:3
Cultural and poitical history of France and French community with discussion of physical and political geography, ant, music, religion, philosophy, education, the social and economic struetures. Prerequisite: ML 134 or equivalent.

RUSSIAN

ML 151 Russlan t: Foundation Course*
3:0:3
For students who have had no previous training in Russlan. Audiolingual emphasis on developing proflciency in reading, comprehension, speaking. Early practice In reading original Russlan prose and representative poems.

ML152 Aussian II*
3.0:3

Continuation of basic foundation provided by ML 151. Reading of Russian prose and poetry of intrinsic literary value. Prerequfsite: ML 151 or equivalent.

ML 153 Russlan III: Readings in 19th-Century

 Russian Literature*Selected reading and discussion of significant works in prose, lyric poetry, drama to acquaint student with outstanding writers, ideas, movements in Russian literature. Prerequisite: ML 152 or equivalent.

ML154 RussianIV*
3:0:3
Continuation of ML 153. Reading of mature prose in cultural, philosophical, scientific subiects. Practice in conversational Russian. Prerequisite: ML 153 or equivalent.

ML 155-158 Contemporary Russian Lltereture

 and Civilization*each 3:0.3
Readings in Soviet prose and poetry. Simultaneoua study of USSR's geographic, politicat, culturai status, to serve as appropriate background materlat. Alt readings in Russlan. Prerequisite: ML 154 or equivalent.

SPANISH

ML 181 Spanish i: Foundatlon Course
3:0:3
For students who have had no previous training in Spanish. Audiolingual emphasis on developing proflciency in reading, comprehension, speaking. Early practice in reading orlginal Spanish prose and representative poems.

ML 162 Spanish II 3:CO3
Continuation of basic foundation provided by ML 161. Readings of modern Spanish prose and poetry of intrinsic literary value. Prerequisite: ML 161 or equlvalent.

ML 163 Spanigh Iti: Readings In Spanish Uterature Since 1800
 3:0:3

Selected reading and discuasion of significant works in prose, iyric poetry, drama to acquaint student with outstanding writers, ideas, movements in Spanish itterature. May be taken by students who have had secondary school training In Spanish. Prerequisite: ML 182 or equivalent.

ML 184 Spanlsh IV
3:0:3
Continuation of ML 163. Reading of mature prose in culturat and philosophical subjects. Practice in conversational Spanish. Prerequisite: ML 163 or equivalent.

ML 285-288 Culture of Latin America 1, II* each 3:0:3 Survey of intellectual and itterary aspects of Hispano-American civilization touching on historical, sociological, political, eco nomic background material. Readings in Spanish. Discussion of contemporary scene and practice in speaking Spanish. Prerequisite: ML 164 or equivalent.

LITERATURE IN TRANSLATION

ML 311 Currents of Unrest In 20th Century German Literature (in English translatlon)*
 $3: 03$

Study of some major writers of German-speaking countries against turbutert polltical background of Europe in 20th century. Students read one complete work by each of the following noveilsts: Hermann Hesse, Franz Kafka, Thomas Mann, Heinrich Boll, Gunther Grass, Hermann Kant. Course work directed toward understanding these men and their work within their own varying social and cultural settings. Students encouraged to pursue interests in individual authors.

ML 312 Currents of Unrest In 20th Century: French Literature (In English translation)*
Study of major French authors: Jean-Paul Sartre, Albert Camus, Samuel Beckett, Eugene lonesco, Jean Genet. Course work includes one complete work of each writer. Students encouraged to pursue interests in individual authors.

ML 313 Currents of Unrest in 20th Century: Pussian Llterature (In English translation)*
 300:3

Study of modern Russian literature in post-revolutionary political and social setting. Course work based on works by Sholokhov, Pasternak, Solzhenitsyn. Students encouraged to pursue interests in individual authors.

ML 318 The Hebraw Bible*

3:0:3
A study of three parts of Hebrew Bible with emphasis on language of Bible and traditional modes of interpretation, Discussion of recent paleographic and archaeological materials.

ML 319 The Jewish Herltage*
3:0:3
Rapid survey of Jewish history. Language of the Jews: Rabbinical Hebrew, Aramaic, Yiddish (West and East), Judeo-Arabic, Judeo-Persian, Ladino, modern Hebrew. The Jewish Year: laws and customs. Survey of sources and guide to literature.

LINGUISTICS

ML 38T Lenguage and Soclety*
3.0:3

Nature and social functions of language. Its key properties as contrasted with animal communication. Theories on origin of speech. Vocal organs. Introduction to phonetics and phonemics. History of writing. Phonetic changes. Survey of world's languages. Etymology, semantics, semantic shifts. Open to undergraduate and graduate students. May be taken as humantties elective.

ML382 Introductlon to the Study of Language

3:0:3
Principles and methods of descriptive study of language; survey of major linguistic theories; development of writing; typological diversity in world's languages and the mechanisms of language change that give rise to lingutstic variety. May be taken as humanities elective.

ML 383 Advanced Topics in Study of Language* 300:3

 Study of descriptive and historical linguistics. Detailed analysis of topics in syntax, phonemic problems in study of Engiish and foreign languages, graphemfics, linguistic phylogeny and phylogenetic changes. Generative-fransformational, mathematicai, and computational linguistics. Machine translation. May be taken as humanities elective. Prerequisite: ML 381 or ML 382 or equivalent.
GRADUATE COURSES

SCIENCE, TECHNICAL AND FINANCIAL WRITING AND JOURNALISM

JW 600 Introduction to Specialized Joumalism $\quad 21 / \mathbf{n}_{10: 3}$ A course designed to familiarize the student with the career opportunities available and the writing requirements demanded in these major fields of specialization: financial and business journalism, industrial and trade magazine journailism, medical journalism, industrial public relations and advertising, scientific and engineering writing. Students will be required to reaearch and write articles in each of these areas.

JWeOt Styis for the Professional Writer

$21 / 2: 0: 3$
Designed to strengthen the student's command of usage, style, grammar, punctuation, precision, logical structure and color through intensive copyediting practice.

JW 602 Proposal Writing

21/2:0:3
Solicited and unsolicited proposals in both the government and private sectors are covered. The different types of proposals are covered. Topics include writing and editing, ability to work as a team member and to cope under heavy pressure, knowledge of graphics and production and procedures in proposal writing. Emphasis on the elements of a typical proposal, such as statement of the problem, technical discussion, how the team will organize to perform the task, fiscal information, technical competency of the company to perform the task, key personnel, etc. The student will be required to prepare an outiine and then to write a proposal on a specific topic worked out with the instructor as the major course assignment.

JW 603 Reporting on Science, Technology and Medicine

21/2:0:3
Emphasis on spot-news reporting and the Sunday-supplement feature aimed at a general newspaper audience. The longer interpretive pieces done for this course will require personal and/or telephone interviews with recognized medical, scientific and engineering authorities in a given discipline. The stories, however, will be written in a popularized vein for a general audience. Course will consider how science writers develop fea-ture-article ideas and how they follow them through to publication. Students will be encouraged to submit the work they do in the course for publication.

JW 604 Graphlcs and Production Techniques \quad 21/2:0:3 An introduction to graphic design and production techniques and procedures for technical writers and editors, with emphasis on magazine layout and producing technical reports, manuals and proposals. Topics covered will inctude composition methods, copy preparation and processing, page makeup, mechanics, printing processes, magazine imposition. Course will be conducted in a workshop atmosphere.

JW 605 Llbel Law and Press Ethies 21/2:0:3

Based on a study of some classic cases, this course will famijiarize the student with the essentials of libel law necessary when writing for publication. Journalistic ethics and writers' responstbilities to sources and readers are also considered.

JW 606 Oral Tectnical Presentations
21/2:0:3
The factors that make an engineering or scientific talk or panel discussion not only informative but interesting to the listener from an audio-visual standpoint as well. Major considerations are content of the talk, the speaker's demeanor, use of visual aids, delivery of the paper (diction, enunctation, voice, posture, gestures, methods of preaentation). Students will participate In speechmaking situations and in panel discussions covering a wide variety of technical subjects.

JW 820 Financlal and Business Reporting
21/2:0:3
For students who intend to go into financial and business reporting or financial public relations, this course will be conducted as a workshop. Students will cover the business and financial scene as if they were reporting for a business pertodical or the financlal section of a newspaper. Hard business news reporting and interpretive pleces will be stressed in such areas as economic trends, marketing, corporate activities, the stock market, government regulations, industriai technology, labor-management relations, energy, industry and the environment and advertising. Course will familiarize the student with the corporate annual report, the investment company's research report, stock analysis reports, the financial press telease. Financial and business publications will be studied.

JW 621 Reporting and Editing for the Business Press

21/20:0.3
The need exists on business and trade magazines-both technical and non-technical-for reporters and editors with solld
journalistic skills and a knack for digging out facts. This course surveys the diverse editortal opportunities in business-press joumalism and helps the student devetop the necessary skiils in writing, editing and interviewing that such publications demand. Among the assignments: writing short news stories, copyediting (including the writing of heads and decks), rewriting weak copy for a magazine's departments (new products, books and literature, case histories, news, company and personality profiles, etc.), short features describing plant layouts, machine operation, maintenance procedures and business conditions. Consideration will be given also to the longer feature article, often referred to as the roundup story. Since most specialized business (trade) magazines serve a parlicutar field of indusiry (automotive, electronics, petrochemicals, etc.), many of the articles appearing in them are contributed by industry authorittes. The course will emphasize the responsibility of the editor to cultivate good working relationships with such people to induce them to write.

JW 822 Wrting Copy for Industrial Public Relations

21/20:3 A workshop approach to doing public relations work for a corporation requiring both product and corporate publicity. Course covers the PR functions from the standpoint of both the inhouse staffer and the account executive at the agency. Among the subjects taken up: publicity methods used to introduce a new product, writing the standard press release, preparation of the technical article dealing with a phase of the company's expertise, writing and placement of case histories, arranging press conferences and plant tours, handling press inquiries, writing speeches. The course also considers the working relationship that develops between the PR agency and the in-house staff of the client in cases where companies utilize both services.

JW 623 Publications Management and Budgeting

Setting up and managing a budget for a publication. This course deals with alt phases of expenses (fixed and varlabie) incurred in the establishment and operation of both a corporation's publications group and a business magazine's editorial department: sources of income, salaries and fringe benefits, art costs, production costs (including printing), travel and entertainment, telephone, space rental, office supplies, temporary help and other expenses normally incurred by editorial departments. Budgeting for the business magazine will concentrate on five key elements, showing how they refate to the editorial department's operation: editorial, mechanical, advertising, circulation, administration. Students will work on specific projects involving page budgets and dollar budgets.

JW 624 Wrting Product-Information Copy

$21 / 2: 0: 3$
Consideration of the mass of sales-promotional and technical catalogues, brochures, manuais, spec sheets, flyers and news releases that promote a company's products. Emphasis will be on the approaches to writing such material. In addition to preparing copy for the shorter product-promotion bulletins, students will be responsible for providing the text for a major catalogue or brochure promoting a given product or technology and based on raw data either provided by the instructor or gathered by students. Course will stress the need for product information of varying degrees of technical complexity to suit the technical competency of the prospective customer for whom the literature is intended.

JW 825 Advanced Medleal Reporting

21/2:0.3
Writing on medical and biological subjects, with emphasis on interviewing. Students will gather much of the information for their writing assignments from sources in the field and will propare articles for the general press, semi-technical reports for pharmaceutical houses, articles for professional magazines, and sales and promotional literature for medical products.

JW628 Medical Public Relations
21/2:0:3
The special considerations, responsibilities and problems faced by public relations officiais at medical research facilities, hospitals, medical schools, foundations and fund-raising organizations, and pharmaceutical companies. Emphasis on witing medical and pharmaceutical press releases, brochures, fifm scripts, other in-house publications, speeches, press kits for press briefings. Visits to medical facilities to talk with public relations officials and research scientists.

JW 627 Writing Copy on Pharmaceuticals

 and Drugs21/2:0:3
Course is geared to preparing students for expanding opportunities in writing copy for pharmaceutical and drug companies. Intensive practice in writing new-product dafa sheets, bulletins and other technical literature generally used by "detail" men; research reports, progress reporls and other technical papers based on information supplied by the instructor and that gathered on trips to local pharmaceutical companies; technical speeches; advertising and public relations copy. A major paper will be assigned as a term project.

JW 628 Wrting Industrial Advertising Copy

21/2:0:3
Covers the objectives of industrial and technical advertising and how to achieve them through the three basic ingredients of the magazine ad: copy, artwork and layout. Emphasis is on the principles of writing effective copy and heads, the process of media selection for a given ad (product promotion, institutional), the preparation of an ad campaign, how to set up booths for industrial displays and exhibits, conducting the direct-mait campaign, the value and preparation of sales fiterature and an analysis of business-publication advertising today. The roles of the company advertising manager and the agency's account executive and their interrelationship are delineated. Completion of a special project and several adwriting assignments will be required.

JW629 Writing the Marketing Report
21/2:0:3
The purpose of the marketing report is to aid the client in finding the best means to increase sales of a given product. It is also employed to present the findings of text-marketing programs and to make recommendations based on these findings. This course deals with the writing of reports based on intensive analysis of customer reaction to a given product. Students will acquire the basic skills needed to research, analyze and interpret raw data gathered in putting together their own reports. The importance of making intensive use of tabular data and graphs will be stressed. Case histofies will be studied.

JW 630 Basic Technical Report Writhgl $\quad 21 / 2: 123$ Fundamentals of technical writing. Emphasis on organization, clarity and accuracy in writing abstracts, descriptions of processes and mechanisms, definitions, short technical correspondence, trip reports, technical sales letters, technical information sheets and trouble shooting reports. Study of related jibrary information-retrieval techniques and use of data banks for background and verification of technical fnformation.

JW 831 Basic Technical Report Wrlting il
21/2:0:3
The longer reporl forms: progress, evaluation, feasibility, investigation. Analysis of parts of text, including statement of problem, methods, conclusions, and use of graphic and tabular material. Emphasis on logical organizations and clarity. Introduction to editing, tayou and production techniques.

JW 832 Wrting Tectnical Manuals
21/2:0:3
Intensive practice in preparing industrial and military technical instruction manuals covering alt phases of operation and maintenance of various kinds of equipment. Training in how to write these documents according to government specifications. The compilation of technical information for the manual and its use in conjunction with extensive graphics and tabufar material
(such as troubleshooting charts) are emphasized in practical writing situations. Assembling of a parts list is covered. The writing of milltary training manuals is also included.

JW 701 Special Profect in Professional Wrtting

21/2.0.3
Students working in conjunction with a faculty member, will pursue a course of independent study dealing with a special facet of professional writing. They will be expected to gather the bulk of their information firsthand, that is, from personal contact with their sources, in addition to conducting the usual literature search. The end result of this project will be an original, thought-provoking, interpretive report to be submitted to the department for faculty review and approval.

JW 702 Speclai Toples in Joumailsm
 21/2.0:3

This special topics course will be offered from time to time by faculty members, visiting scholars and professionals. The special titles and prerequisites will be announced prior to registration.

ENGLISH AND HUMANISTIC STUDIES

HU $605 \dagger$ Report Writing

21/2:0:3
Various standard forms of technical and scientific writing. Emphasls on clarification of purpose, logical organization, effective style. Analysis and discussion of reports appearing in current professional journais. Methodology of bibiliography.

HU 829 Seminar in Shakeepeare*

21/2:0:3
Art and artifice in conatruction and motivetion of several major plays by Shakespeare. Discussion and research papers. Prerequisites: $\mathrm{HU} 211, \mathrm{HU} 212, \mathrm{HU} 222$ or equivalent.

HU 638 \dagger Seminar in Amercan Thought* $\quad 21 / 2: 0: 3$
Basic American attitudes and concepts as revealed by cultural output-literature, films, periodicals, comics, art-with em. phasis on development of American mythoiogy. Prerequisites: HU 251, HU 252, HU 262 or equivalent.

HU $652 \dagger$ Seminar in Philiosophy of Sclence* $\quad 21 / 20.0: 3$ Selected aspects of methodoiogy, presuppositions, scope, goals of natural sciences. Relations between science and philosophy, relation of scientific knowiedge to world of experience; status of logical and mathematical truth; nature of explanation; causality, determinism, induction; laws and theorles; nature of meaning.

HU $654 \dagger$ Seminar in Soctal And Political Phtilosophy*

$21 / 200: 3$
Analysis of central concepts of social and polltical thought: freedom, law, fustice, rights, democracy, property, etc., as illustrated in writings of historical and contemporary philosophers. Emphasis on varlous interpretations of these concepts found in currently influential and conflicting sociopolitical ideologies.

HU 697 \dagger Seminar In Englioh Language*
21/2:0:3
History and development of English language. Sound shifts, morphology, phonology. Readings in old, middle, early modern English.

MODERN LANGUAGES

ML611† German for Research*
21/2:0:3
For students in all fieids who need practice in translation of scientitic writings from German Into English. Entargement of sctentific vocabulary. Problems of syntax and idiome characteristic of scientific German. Intended to prepare students for M.S. and Ph.D. language examinations. Prerequisite: one yea; of German or instructor'a permission.

ML655 \dagger Russlan for Research 1^{*}
21/2.0.3
Introductory course designed for students who wish to acquire facility in translation of scientific material from Russian into English. Involves introduction to fundamentais of grammar, problems of syntax and idioms, with emphasis on scientific terminology. Does not airn at thorough formal knowledge of the language. May not be affered in fulfilment of language requirement.

ML656 \dagger Russian for Reeerarth II*

21/2:0:3 Continuation of ML 655. Reading material selected from periodical and technical journals covering the several fields of engineering and science. Prerequisite: ML 655 or equivalent.

FACULTY

Donald Hockney, Professor of Philosophy of Science and Head of Humanities
B.A., McMaster University; Ph.D., Cornell University Philosophy of science, philosophy of language

Victor Bobetsky, Professor of Modern Languages B.A., M.A., Columbia University German language and ifterature

Bemard Rechtschaffen, Professor of Modern Languages
B.S., M.A., Ph.D., New York University

Comparative literature, science and hiterature
Duane DeVries, Associate Professor of English
B.A., Kalamazoo College; M.A., Ph.D., Michigan State University
Dickens, nineteenth-century English novel, expository writing

Harley S. Thompson, Associate Professor of English B.A., Cotlege of Wooster; Ph.D., Yale University English Renaissance, Milton, classical literature

Anne Elsenberg, Assistant Professor of Communications and Humanities
B.A., Barnard College; M.A., University of lowa; Ph.D., New York University
Linguistics, technical writing, reading

Barbara Quint Gray, Assistant Professor of Communications and Humanities
B.A., The University of Michigan; A.M., Harvard University; Ph.D., New York University Linguistics, expository writing

Peter Z Grossman, Assistant Professor of Communications and Humanities M.A. M.F.A., Columbia University Business and financial journalism, creative writing, dramatic literature

Sylvia Kasey Marks, Assistant Professor of English B.A., M.A., University of Michigan; Ph.D., Princeton University
Samuel Richardson, eighteenth-century English novel, public speaking

Lowell L. Scheiner, Assistant Professor of Communications and Humanities
B.A., CCNY; M.A., Columbia University; M.S., Columbia University (Graduate School of Journalism)
Technical writing, journalism

ADJUNCT FACULTY

Frank Allen, Adjunct Instructor of Communications M.A., University of Oregon

Edward Bell, Adjunct Instructor of Communications B.A., CCNY

Trudy Bell, Adjunct instructor of Communications B.A., University of California, Santa Cruz; M.A., New York University

Elisabeth B. Boise, Adjunct Instructor of Modern Languages
Staatsexamen, University of Frankfurt/Main; Ph.D., New York University

Rogers Brubaker, Adjunct Instructor of English
B.A., Harvard University; M.A., University of Sussex

Bradley W. Clompus, Adjunct instructor of English
A.B., Grinnell College; M.F.A., University of Jowa

Frederick Courtney, Adjunct Instructor of Modern Languages
A.B., Columbia College; M.A., University of Michigan; Ph.D., Columbia University

Manning Dandridge, ili, Adjunct Instructor of English B.A., M.A., SUNY at Stony Brook

Edward Edelson, Adjunct Instructor of Communications
M.S., New York University

Annette Henderson, Adjunct Instructor of Communications B.A., Brown University

Willam D. Hom, Adjunct Instructor of Communications
B.A., M.A., University of California, Santa Barbara; Ph.D., University of California, Los Angeles

Elly Jesser, Adjunct Instructor of English
B.A., Herbert H. Lehman College; M.A., New York University

Erlc Katz, Adjunct Instructor of Philosophy B.A., Yale University, M.A., Boston University

Jerome M. Leltner, Adjunct Professor of Communications
B.A., Brooklyn Coilege; LL.B., New York University Law School

Linda Lemer, Adjunct Instructor of English B.A., M.A., Brooklyn College

Suzanne Loebl, Adjunct Instructor of Communications B.S., Institute Maurice Chimje, Brussels

Robert M. McEntire, Adjunct Instructor of English B.A., Westminster College; M.A., University of Michigan; Ph.D., Tufts University

Thomas A. Murray, Adjunct Instructor of Communications
B.A., Fordham University; M.A., University of North Carolina

Jerome M. Paris, Adjunct instructor of English B.A., Reed College; M.A., Johns Hopkins University; M.A., Teachers College, Columbia University; Ph.D., Cornell University

Valene Sayers, Adjunct Instructor of English
B.A., Fordham University; M.F.A., Columbia University

James W. Scow, Adjunct Instructor of Philosophy
B.A., University of Pennsylvania; M.A., M.Phil., Columbia University

Alice Svendson, Adjunct Instructor of English
B.A., St. Mary's Dominican College; M.A., Cotorado

State University
Roberta Ventslas, Adjunct Instructor of English
B.A., M.F.A., Brookiyn Coilege

Philip S. Vitale, Adjunct Instructor of English B.A., M.A., Queens College

Robert L Whitney, Adjunct Instructor of English
B.A., University of New Hampshire; M.Div., Chicago

Theological Seminary
Poslyn Willett, Adjunct instructor of Communications B.A., Hunter College

Anne P. Wong, Adjunct Instructor of English B.A., Williams College; M.A., New York University

EMERITUS FACULTY

John G. Cavanna, Professor Emeritus
Ph.D., University of Minnesota
Conrad Homberger, Professor Emeritus
Ph.D., University of Munich (Germany)
Clifford Osbome, Professor Emeritus
M.A., University of Denver

Warrington Winters, Professor Emeritus
Ph.D., University of Minnesota

INDUSTRIAL ENGINEERING

The fleld of industrial engineering deals with the analysis, design and utilization of modern, large-scale systems ranging from completely automated processing plants through urban systems-transportation, justice and health care, for example-to managerial systems composed solely of human beings. It concerns itself with those areas in which the systems approach, engineering knowledge and analytical techniques are applled directly to the most urgent problems of suciety.

The discipline is a rapidly developing professional field with opportunities in many diverse areas. For example, pract|tioners are called on to:

- Analyze and plan production schedules and inventories
- Devise ways of maximizing the effectiveness of hospitals and other health care facilities
- Diagnose and correct causes of poor quality in production
- Study the feasibility of equipment replacement
- Evaluate proposed traffic control procedures
- Locate new plants and design their physical layout
- Develop computer simulations of man-machine systems
- Study the effects of feedback and automation on society and industry

Industrial engineers apply engineering and operatlons research techniques to the analysia and solution of actual problems in industry, government and nonprofit service organizations. While there is considerable overiap of industrial engineering with operations
research, a few differences may be noted. Operations researchers tend to emphasize analysis and prefer analytical models. The industrial engineer's primary task is to solve specific problems and to design new man-mschine configurations. They make heavy use of the computer, frequently employing heuristic rather than analytic approaches.

Industrial engineers concern themselves with systems in which the mission is imprecisely specified, in which limited resources are available, or in which there is great varlability in input and output demands. They are involved in decision-making in the face of incomplete information and conflicting objectives that frequently cannot be adequately defined, that are subjective, and that are difficult to quantify. They seek to allocate limited resources in an optimal manner. A unifying theme focusing this body of knowledge and methods into a coherent entity is the system point of view. The search for similarity among concepts, laws and models of different disciplines, the emphasis on the adaptation, integration and exploitation of existing techiniques in areas other than their fields of origin, and, above all, a unique point of view dealing with relationships rather than with components-these characterize the orientation of industrial engineering.

Many industrial engineers eventually move from the analysis and design of productive systems to their administratlon. While engineering and management are different fields of endeavor, both require the ability to make decisions based on valid information. The industrlal engineer is especially trained in obtaining and evaluating such information.

UNDERGRADUATE PROGRAM

The undergraduate program leads to the degree of bachetor of science in industrial engineering, which is accredited by the Accreditation Board of Engineering and Technology. The program is built on the essential scientific and mathematical foundations underlying the field.

The undergraduate program requires 128 credit-hours of work, including mathematics, chemistry, physics, humanities, social science, required departmental courses, and technical and free electives. The humanities, technical and free electives permit an extremely flexible program of study in which the student has the opportunity to pursue individual interests that build on the core requirements. Some possible elective sequences are listed in the Operations Research section of this catalog.

While other engineers work primarily toward the creation of better products, the industrial engineer is also concerned with the economic and human effects of changing technology. The undergraduate curriculum therefore provides a strong background not only in engineering, mathematics and physical sciences, but also in economics and psychology. In addition, the industrial engIneering courses emphasize the application of these disciplines in industry, government and service institutions such as hospitals, banks and schools. The industrlal engineer is thus in a strategic position to bring about the best integration of men, materials, machines, time and money in any endeavor.

ROTC students should note that freshmen and sophomores may substitute zero-credit military sclence courses for PE 101-104 (physical education); juniors and seniors may substitute three of the following twocredit courses: MS 131, 142, 143, 146, for six credits of technical electives.

Graduate courses may be taken as electlves by qualified junlors and seniors with at least a B average, who obtain their adviser's approval. If the total number of credits exceeds those required for the bachelor's degree, these graduate credits may be credited toward a graduate degree in accordance with current Polytechnic policy.

Four-Year Program. A typical program sequence is shown on the following page covering eight semesters. Students may rearrange courses and increase or decrease load per semester to suit their educational needs, provided prerequisites are not violated.

[^9]Requirementa for the Degree of Bachelor of Science in Industrial Engineering*

Credits
Mathematics: MA 101,' MA 102,' MA 103, MA 104,' MA 223, MA 224
Science: \quad CM 101, CM 102, CM 111, CM 112, CS 100, PH 101, PH 102, PH 103 18
Humanities: HU 101, HU 200,' SS 104,' SS 189,SS 251, SS 252
Physical Ed: PE 101, PE 102, PE 103, PE 104 18

AM 101, AM 115, AM 121, EE 370, EE 374, MT 301 IE 252, IE 254, IE 300, IE 306, IE 311, IE 319, IE 321, IE 324, JE 327, IE 328, IE 380
Electives: ${ }^{2} \quad$ Chosen by student in consultation with departmental adviser

Total
128

TRANSFER STUDENTS

Transfer students who have completed two years of study at a college of liberal arts and science or a community college may ordinarily complete the requirements for the bachelor's degree in two addltional years of study. Assuming that the student has completed 64 credits equivalent to MA 101-104, PH 101-103, CM 101-102, CM 111-112, CS 100, HU 101, HU 200, SS 104, SS 189, SS 251-252, plus 14 credits of acceptable electives, the student can complete the requirements as shown on page 135.

EVENING PROGRAM

The degree requirements for part-time evening students in the industrial engineering program are in all respects identical to those for fuli-time students. The evening program is structured so that a student may complete all requirements in eight years without summer work.

A suggested sequence is shown on page 135. Students may change this sequence and increase or reduce the number of credits per term to suit their needs or available time, provided they do not violate the prerequisites.

SUGGESTED ELECTIVE SEQUENCES

Students often seek guidance in using the permitted electives to develop a meaningful sequence for concentration. Some suggested groupings from which the student may select electives are shown in the Operations Research section of this catalog; these are merely suggestions, not required sequences of study.

Typical Course of Study for the Bachelor of Science Degree in Industrial Engineering

Freshman Year

First Semester			Hours/Week	
No.	Subject	Cl.	Lab.	Cr
CS 100	Intro. to Computer Prog.	2	0	2
HU 101	College Composition	3	0	3
MA 101	Calcutus I'	4	0	4
PH 101	Introductory Physics I	3	0	3
SS 251	Economics 1: Micro-Econ.	3	0	3
PE 101	Physical Education !	0	2	0
				15

Second Semester			Hours/Week	
No.	Subject	Cl .	Lab.	Cr .
AM 101	Graphics	1	3	2
HU 200	Intro. to Literature'	3	0	3
MA 102	Calculus Ii ${ }^{\text {1 }}$	4	0	4
PH 102	Introductory Physics :1	$31 / 2$	$11 / 2$	4
SS 252	Economics II: Macro-Econ.	3	0	3
PE 102	Physical Education If	0	3	0
				16

Sophomore Year

AM 115	Engineering Mechanics	4	0	4
CM 101	General Chemistry !	$21 / 2$	0	$2^{1 / 2}$
CM $1: 1$	General Chemistry Lab. I	0	$11 / 2$	1/2
IE 254	Industrial Management	3	0	3
MA 104	Appl. Differential Equ.'	3	0	3
PH 103	Introductory Physics ift	$21 / 2$	$11 / 2$	3
PE 103	Physical Education III	0	2	0

AM 121	Mechanics of Materials	3	0	3
CM 102	General Chemistry It	$21 / 2$	0	$21 / 2$
CM 112	Generai Chemistry Lab 11	0	$1 / 2$	$1 / 2$
IE 252	Cost Fundamentals	3	0	3
MA 103	Calculus IIf	3	0	3
SS 104	Contemp. World Hist.'	3	0	3
PE 104	Physical Education IV	0	2	0

Junior Year

EE 370	Princ. of Electrical Eng.	3	0	3	IE 300	Eng. Economic Analysis	3	0	3
EE 374	Instrumentation Lab.	0	3	1	IE 328	Operations Research II	3	0	3
tE 306	Work Design \& Measurement	21/2	$11 / 2$	3	1E380	System Simulation	3	0	3
IE 327	Operations Research I	3	0	3	MA 224	Intro. to Math. Statistics	3	0	3
MA 223	Intro. to Probability	3	0	3	MT 301	Mech. Behav. of Materials	2	3	3
SS 189	Intro. to Psychology	3	0	3		Electives ${ }^{2}$			3
				16					18

Senior Year

Typical Course of Study for Transfer Students

Junior Year

First Semester		Hours/Week		
No.	Subject	Cl.	Lab.	Cr.
AM 115	Engineering Mechanics	4	0	4
IE 254	Industrial Management	3	0	3
IE 306	Work Design \&			
	Measurement	$21 / 2$	$11 / 2$	3
IE 327	Operations Research 1	3	0	3
MA 223	Intro. to Probability	3	0	3
				16

Second		Semester		Hours/Week	
No.	Subject	Ci.	Lab.	Cr.	
AM 121	Mechanics of Matertals	4	0	4	
1E 252	Cost Fundamentals	3	0	3	
1E 300	Eng. Economtc Analysis	3	0	3	
IE 328	Operations Research II	3	0	3	
MA 224	intro. to Math. Statistics	3	0	$\frac{3}{16}$	

Sentor Year

EE 370	Princ. of Elec. Engineering	3	0	3
EE 374	Instrumentation Lab.	0	3	1
IE 311	Statist. Quality Control	3	0	3
IE 319	Prodctn. Planning \&			
	Control	3	0	3
	Electives			
				$\frac{6}{16}$

AM 101	Graphics	1	3	2
IE 321	Facility Layout \& Location	3	0	3
IE 324	Computers in Oper.			
	Analysis	1	3	2
IE 380	System Simulation	3	0	3
MT 301	Mecc. Behav. of Materials	2	3	3
	Electives 2			$\underline{3}$
				16

See text for explanation.
Total credits required for graduation: 128

	Typical Course of Study for Evening Students							
First Year								
First Semester	Hours/Week			Second Semester			Hours/Week	
No. Subject	Cl.	Lab.	Cr.	No.	Subject	C.	Lab.	Cr.
HU 101 College Composition	3		3	CS 100	Intro. to Computer Prog.	2		2
MA 101 Calculus ${ }^{\text {¹ }}$	4	0	4	MA 102	Calculus 15 ${ }^{\text {a }}$	4	0	4
				PH 101	Introductory Physics I	3	0	3
Second Year								
MA 103 Calculus It'	3	0	3	MA 104	Appl, Diffl. Equations ${ }^{1}$	3	0	3
PH 102 Introductory Physics it	$31 / 2$	$11 / 2$	4	PH 103	Introductory Physics III	$2^{1 / 2}$	$11 / 2$	3
				SS 104	Contemp. World Hist. ${ }^{\text {a }}$	3	0	3
Third Year								
CM 101 General Chemistry 1	$21 / 2$	0	$2^{1 / 2}$	AM 101	Graphics	1	3	2
CM 111 General Chemistry Lab.	0	$11 / 2$	1/2	CM 102	General Chemistry If	$21 / 2$	0	$21 / 2$
HU 200 Intro. to Literature'	3	0	3	CM 112	General Chemistry Lab. II	0	$11 / 2$	1/2
IE 254 Industrial Management	3	0	3	IE 252	Cost Fundamentals	3	0	3
Fourth Year								
AM 116 Engineering Mechanics I	2	0	2	AM 117	Engineering Mechanics !!	2	0	2
IE 306 Work Design \& Measurement	$2^{1 / 2}$	$11 / 2$	3	1E 300	Engrg. Economic Analysis	3	0	3
SS 251 Economics I: Micro-Econ.	3	0	3	MA 223	Intro. to Probability	3	0	3
Fifth Year								
IE 327 Operations Research 1	3	0	3	IE 328	Operations Research II	3	0	3
MA 224 Intro. to Math. Statistics	3	0	3	MT 301	Mech. Behav. of Materials	2	3	3
SS 189 Intro. to Psychology	3	0	3	SS 252	Economics It: Macro-Econ.	3	0	3
Sixth Year								
AM 121 Mechanics of Materials	3	0	3	IE 321	Facility Layout \& Location	3	0	3
IE 311 Stat. Quality Control	3	0	3	IE 380	System Simulation Elective ${ }^{2}$	3	0	3 3
Seventh Year								
EE 370 Princ. of Electrical Eng.	3	0	3	IE 324	Computers in Oper. Anal.	1	3	2
EE 374 Instrumentation Lab.	0	3	1		Electives ${ }^{2}$			6
IE 319 Production Planng. \& Control	3	0	3					
Eighth Year								
Electives ${ }^{2}$			9		Electives ${ }^{2}$			6

See footnotes on previous page

GRADUATE STUDY

The graduate program in industrial engineering leads to the degrees of master of science in industrial engineering, engineer in industrial engineering and doctor of philosophy.

Within these degree programs, students may pursue graduate studies in such specialized areas as information science, system simulation, quality control, experimental design, man-machine systems, social systems dynamics, production engineering, production and inventory models, reliability and maintainability. Certificate programs are available for more limited graduate study in many specialized topics.

Graduate students come with diverse academic training. Many professionals in this area of specialization receive the major part of their training at the graduate level. One ingredient common to our students is a desire to develop techniques for problem-solving and decision-making in a technological world.

Students are encouraged to seek waivers for all required courses in which they can demonstrate competence, so that they can use their time most effectively.

MASTER OF SCIENCE DEGREE

The Division of Management offers a program Ieading to the degree of master of science in industrial engineering. The general requirements for the master of science degree are stated in this catalog under "Degree Requirements." Detailed requirements for this degree are shown below.

A bachelor's degree with mathematics through calculus (equivalent to MA 103) is required for admission to the program. Applications should be made to the Division of Management with industrial engineering indicated as the area of specialization. Requirements for the master's program are on page 156.

Requirements for the Master of Science Degree in Industrial Engineering

A. Basic Required Courses'

IE 600 Engineering Economic Analysis
IE 601 Intro. to Digital Computing
JE 606 Work Design \& Measurement
MA 561 Elements of Probability
OR 608 Statistics
OR 627 Op. Res.: Deterministic Models ${ }^{4}$
B. Required Courses................ 9 units

IE 611 Statistical Quality Control
IE 619 Production Planning \& Control
OR 628 Op. Res.: Stochastic Models ${ }^{4}$
C. Major Electives²: Select 4. 12 units
$\{$ IE 614 Modlg. of Social Systems
\{ IE 846 Urban Systems Analysis
IE 621 Facility Layout \& Location
IE 776 Material Requirements Planning
IIE 778 Advanced Production Planning

Computer-Augmented Case Studies
in Management Science
System Simulation I
IE 685
IE 852
Reliability I
Applied Regression \& Analysis of Variance
IE 853
IE 765
IE 777
IE 779
Design of Experiments
Human Factors in Engineering Design
Manufacturing improvement Curves
Advanced Work Systems Design
$\{$ OR 665 Microeconomic Models
OR 671 Business \& Economic Forecasting
D. Other Relevant Electives ${ }^{3}$. 15 units

Minimum Total 36 units

ENGINEER DEGREE

The Division of Management offers a program leading to the degree of engineer in industrial engineering. The general requirements for the engineer degree are stated in this catalog under "Degree Requirements." Detailed requirements for this degree are shown below.

This professional degree is intended for engineers who desire to advance their professional development and training beyond the master's level but without the original research that is required of doctoral students.

Admission to the engineer degree program assumes possession of a master's degree substantially equivalent to the Polytechnic M.S. in I.E. The engineer degree requires a minimum of 72 units beyond the bachelor's degree or 36 units beyond the master's degree, including at least 6 units of a design project. On completion of the design project, the candidate will be required to make a final oral presentation before a faculty committee. The project requirement may be waived by the guidance committee for professionally mature candidates who have previously completed work in their major area that is judged to be of exceptional caliber and for those students who have completed a suitable master's thesis or project.

[^10]
Requirements for the Degree of Engineer in Industrial Enginteering

The student, with his or her adviser, will work out an approved program of study, having at least 36 units, including (groups A, B, C and D refer to M.S. in I.E. requirements):

A. All group A courses

(Nocredit)
B / C. All group B and C courses; only one of each bracketed set is required. No more than 7 of these courses may be credited toward the 36 units. 0.21 units

D . Any group E courses taken for the M.S. under group D, will reduce Group E requirements and increase Group G.
E. Advanced Major Electives 9 units

Select 3 of the following:
IE 612 Advanced Quality Control
IE 615 Social \& Industrial Dynamics
IE 618 Inventory Models
OR 631 Linear Programming
OR 650 Queuing Systems I
OR 666 Macroeconomic Decision Models
IE 778 Advanced Production Planning
IE 779 Advanced Work Systems Design
F. Project: IE 998 (unless waived by adviser)

6-12 units
G. Other relevant electives
$0-21$ units
Minimum Total

DOCTOR OF PHILOSOPHY DEGREE

The Division of Management offers a program leading to the degree of doctor of philosophy in industrial engineering.

The general Polytechnic requirements for the doctor of philosophy degree are stated in this catalog under "Degree Requirements." Specific requirements for the doctoral program may be found in the division's doctoral brochure.

Entrance to a doctoral program is contingent upon passing the program's qualifying examination. This will consist of the Part I preliminary written examination and the Part II major field written examination; an oral examination may also be required. An examination in one foreign language is required, ordinarily French, German, or Russian.

The doctoral program requires a minimum of 90 units beyond the bachelor's degree, including a minimum of 24 units of dissertation; no more than 30 units of dissertation may be counted in the minimum total.

After passing the written qualifying examination, the candidate will select a thesis adviser and prepare a formal proposal for the dissertation research. A thesis committee will be appointed to judge the merit of the proposed research. After approval of this proposal, the doctoral candidate shall register for research. On completion of the dissertation, the candidate must pass an examination in its defense.

CERTIFICATE PROGRAMS

The division offers soveral certificate programs designed for the professional with work experience. A certificate program requires five courses, which are selected in iine with the needs of the individual. Applicants for a certificate program must hold a bachelor's degree. On completion of the sequence with a B average or better, the individual is issued a certificate. Students who choose to work toward a master's degree are able to apply all courses taken toward a certificate on admission to the degree program. Additional information may be obtained from the division.

UNDERGRADUATE COURSES

Note: Junior or senior standing is required for all undergraduate IE courses except IE 200, IE 252 and IE 254.

IE 200 Concepts of Modem Technology 2:3:3 Definition, formulation and evaluation of complex problems involving impact of technology on society. Modeling techniques, analysis and simulation are introduced, emphasizing similarities of approach among different problems. Understanding of importent basic concepts is stressed, but techniques are introduced as needed. Prerequisite: knowledge of computer programming.

IE 252 Cost Fundamentals*

3:0:3
Managerial approach to problem of cost determination and analysis. Job order, process and stendard cost systems. Analysis of indirect manufacturing expense. Preparation and analysis of balance sheet, income and manufacturing statements. Relation between accounting and engineering functions.

IE 254 Industrial Menagement* 3.5:3

Survey course introducing scope of industrial management to engineers, presenting broad view of planning, organization, direction and control of industrial enterprises.

IE 300 Englneering Economic Analysls 21/2:0:3

 Economic and financial considerations in engineering decisions. Decision criteria under certainty, risk, uncertainty. Cost concepts, financial calculations, capital sources, accounting data, depreciation. Comparison of alternatives, minimum cost or maximum profit determination, replacement and economic life, breakeven analysis, effects of taxes, intangible factors.IE 306 Work Design and Measurement
21/2: $1_{1 / 2}^{1 / 3}$
Principles and techniques of designing work methods and work simplificatlon programs. Theory and techniques of work measurement, including time study, work sampling and standard data systems. Laboratory sessions in methods analysis, rating, work allowances and stopwatch time study.

IE 311 Statistical Quality Control
Process control: concept of statistical stability-operational randomness, control charts for variables and attributes. Product control: design and analysis of attributes sampling plans, concept of producer's and consumer's tisks, AOOL, AOL, and LQ of sampling plans, military sampling pians. Introduction to variable sampling plans. Prerequisite: MA 224.

IE 314 Modelling of Social Systems

3:0:3
Social systems viewed as interrelated positive and negative feedback loops whose behavior are governed by structure, amplification and delays. Using the DYNAMO language, students prepare, analyze and restructure several models in ecology, management, economics or related areas individuaily chosen. Prerequisites: knowledge of calculus and computer programming.

IE 316 Commercial Data-Proceasing System Deslgn*

2:3:3
Applications of unit record equipment and computers in system design, including order witting, billing, sales analysis. Accounts receivable, inventory control, payroll and labor accounting, accounts payable, general ledger, case studies. Laboratory use of data-processing equipment, including the IBM 360 . Prerequisite: knowledge of computer programming.

IE319 Production Pfanning and Conirol

3:0:3
Anatytical tachniques for designing and operating production systems. Assembly-tine balancing, job sequencing, inventory control, project planning with PERT and CPM. Applications of lineat programming algorithms to shop loading and production scheduling of single and multiple products. Prerequisite: IE 327.

IE320 Profect Planning and Control

$300: 3$ Network planning techniques for project management and resource allocation. Emphasia on PERT, LBO, CPM, and probabilistic generalized networks. Heuristic models for mujtiproject scheduling and resource leveling. Other topics include network development, computer adaptation, progress reports and project monitoring. Prerequisite: knowledge of computer programming.

IE 321 Facility Layout and Location

3003
Development of quantitative models for analysis of facility layout and location problems. Solutions by both mathematical optimization and heuristic algorithms. Locatlons of single and multiple faclities in existing and new layout design. Other topics include computerized layout planning, minimax location and discrete vs. continuous location planning. Prerequisite: IE 327.

IE 324 Computers in Operational Analysis 1:3:2 Problems in industrial engineering and operations research are assigned. Students use available computer programs to analyze and solve all or parts of the problems. Oral and written reports required. Topics covered inciude statistical forecasting, inventory, ordering, decision trees, project scheduling, tine balancing, control charts, maintenance, queuing, production control. Prerequisites: IE 300 and IE 328.

IE 327 Operations Research 1

$3.0: 3$
Development of mathematical modeis for solving decision problems of deterministic nature. Classical optimization, Lagrange multipliers, linear programming, transportation method, network procedures, games. Dynamic programming. Prerequisite: MA 103.

IE 328 Operations Research It

 $3: 0.3$Mathematical models for solving decision problems of stochastic nature. Queuing, Markov procesees, inventory models, reliabillty, dynamic programming. Prerequisltes: IE 327 and MA 223.

IE 346 Operational Design of
Public Systems
$3.0: 3$
Description, analysis and optimization of public systems. Population, economy, resource allocation, land use, transportation networks and facility focation. Case studies of pollution controt, criminal justice system, fibrary management, fire fighting strategies and public health. Prerequisites: IE 327, IE 328 and senior standing.

IE 357 Technology Transier to
Developing Countries *
3:0:3
Levels of technology: village, intermediate, advanced. Mechanisms of technology transfer to tess-developed countries. National and international means to stimulate or block transfer. Ecological, social, economic factors in technology selection and utilization. Technotogy and political influence. Case studies of recently industrializing nations.
Algo ilsted under SS 357

IE 358 Human Resource Development in Developing Countries*

Spectrum of technology-related manpower needs in lessdeveloped countries; education of engineers, technicians and skilled mechanics. Using foreign personnel, foreign schools, "brain-drain" problems. Economic consequences. Comparisons of education systems of Western, Eastern and developing countries. Design of curricula to suit national needs. Roie of technical assistance programs. Forecasting of human resource needs.
Also listed under SS 358
IE 385 Human Factors in Engineeing Design* $\quad 30: 3$
Study of research techniques that yield information important in man-machine systems design. Man's leaming, problem-solving, physiological and information processing capacities; performance under various environmental conditions. Prerequisite: SS 189.

IE 375 Induatrial Safety Engineering*

3:0:3
Analysis and design of industrial accident prevention, control and management systems. Effect of OSHA, Workmen's Compensation and environmental factors in implementing safety programs. Project work involves satety inspection, detection and control of hazards.

IE 376 Meterial Requirements Planning* 3:-0.3 Quantitative models for analysis of production and inventory management systems. Topics covered include biil of material structures, time-phased parts requirements, shop loading and capacity constraints, priority planning and control, and schedule regeneration. Development of computer-based MRP systems. Prerequisite: knowledge of computer programming.

IE 377 Manufacturng Improvement Curves*

300:3
Development of learning-curve theory, analysis of various improvement curve models and estimation of parameters. Applications of improvement curves are incorporated in evaluating work standards, wage incentives, training and labor turnover cost, inventory control, price policy and production schedules. Prerequisite: IE 306.

IE 380 System Simulation
3.0:3

Modeling and simulation of discrete stochastic systems. Generation of psuedorandom numbers, variates from discrete, continuous, theoretical and empirical distributions. Extensive study of SIMSCRIPT, introduction to other languages. Students program, code and run several simulation modeis. Prerequisttes: knowiedge of computer programming and MA 223, or instructor's permission.

IE 391-3日2 Selected Toplcs In Industrial Engineering and Operations Research I, II*
each 3 credits Areas not covered in other courses. Specific topics vary according to instructor, who may be a visiting professor. Topics and prerequisites announced during term prior to offering.

IE 393-394 Guided Studies in Industilai Englneering and Operations Research I, II

each 3 credits Individual reading of selected papers and current literature in specialized areas of study, guided by faculty mernber. Prerequisite: approval of adviser, instructor and department chairman.

|E396 Industrial Engineering Internehtp*

3 credits Supervised, creative engineering experience of at least two months' duration culminating in written and oral report presented to industrial and faculty supervisors. Faculty visits and conferences during internship. Arrangements to be made prior to beginning internship experience. Prerequisite: completion of junior year and departmental approval.

IE 399 Senior Honors Work in Industrial Engineering and Opertions Resgerch

credit arranged Independent work undertaken by qualified honors students in industrial engineering or operations research under faculty guidance. Prerequisites: senior standing and adviser's approval.

IE 401-402 Project Laboratory I, II IE 402_ 101 1:301 IE 402-credlt arranged Independent project combining elements of theory, experimentatlon design and construction used to discuss methods of approach, design of experlments, modeling, velidation and utilization of results which are common to undertaking of project development. Student-faculty seminars discuss individual projects to encourage students' exchange of ideas and methods, and to enhance each student's abilities in oral and written communication in engineering endeavors. Prerequisite: senior standing.

GRADUATE COURSES

IE 600 Engineering Economic Analyals

21/2.0.3 Economic and financial considerations in engineering decisions. Decision criteria under cerlainty, risk, uncertainty. Cost concepts, financial calculations, capital sources, accounting data, depreciation. Comparison of alternatives, minimum cost or maximum profit determination, replacement and economic life, breakeven analysis, effects of taxas, intanglble factors. Criteria in developing countries. (Not open to students who have taken IE 300.)

IE 601 Introduction to Digital Computing 21/2:0:3 First course in computing, concentrating on analysis of prob-

 lems for computer solution. Organization and characteristics of computers. Structure and properties of algorlthms and programs. Flow charting. Debugging and veriflcatlon, documentation. Number systems, deta representation, numerical errof analysis. FORTRAN IV language used. (Not open to students who have taken CS 101 or equivalent.)Also Ilsted under CS 531 and OR 601

IE 608 Work Design and Measurement

21:3
Principles and techniques of designing work methods and work simplification programs. Theory and techniques of work measurement, including time study, work sampling and standard data systems. Laboratory sessions in methods analysis, rating, work allowances and stopwatch time study. (Not open to students who have taken IE 306.)

IE611 Statistical Quallty Control $\quad 21 / 2: 0: 3$
Process control: concept of statistical stability-operational randomnesa, control charts for variables and attributea. Product controt: design and analysis of attributes sampling plans, concept of producer's and consumer's risks, AOQL, AQL, and LQ of sampling plans, military sampling plans. Introduction to variables sampling plans. (Not open to students who have taken IE 311.) Prerequisite: OR 608.

IE812 Advenced Quality Control*

21/2:0:3
Emphasis on recently developed techniques: cumulative sum charts, theory of runs, evolutionary operations, non-normal variables, sampling plans, treatment of outliers in industrial data. Prerequisite: IE 611.

IE 614 Modeling of Social Systems :

21/2:0:3
Social systems viewed as interrelated positive and negative feedback loops whose behavior are governed by structure, amplification and delays. Using the DYNAMO language, students prepare, analyze and restructure several models in ecology, management, economics or related areas individually chosen. Not open to students who have taken IE 314. Prerequisites: knowledge of calculus and computer programming.

Aso listed under OR 614

IE 615 Modeling of Social Syetems II*

21/2:0:3
ContInuation of IE 614, with greater emphasis on underlying theory. More complex systems are analyzed, and control algorithms are designed and tested to improve performance. Prerequisite: IE 614.
Also Heted under OR 815

IE618 inventory Models

21/2:0:3
Study of inventory systema. Deterministic and probabilistic models. Fixed versus variable reorder intervals. Dynamic and multistage models. Statistical forecasting of demands and lead times. Control of dynamlc inventory systems with lead times. Preregulsites: MA 561 and either OA 627 or OR 631.

Also listed under OR 618

IE619 Production Planning and Control

21/2:0:3
Anaiytical techniques for designing and operating production systems. Assembly-line balancing, job sequencing, inventory control, project planning with PERT and CPM. Applications of linear programming algorithms to shop loading and production scheduling of single and multiple products. Not open to students who have taken IE 319. Prerequisite: OR 627 or OR 631.

Also llated under OR 818

IE 620 Project Planing and Control*

21/2.0:3
Network-planning techniques for project management and resource allocation. Emphasis on PERT, LOB, CPM, and probabllistic generalized networks. Heuristic models for multi-project scheduling and resource leveling. Other topics include network development, computer adaptation, progress reports and project monitoring. (Not open to students who have taken IE 320.) Prerequisite: knowledge of computer programming.

Also ilsted under MC 810 and OR 620

IE621 Facility Layout and Location*
21/2:0:3
Development of quentitative models for analysis of facility layout and location problems. Solutions by both mathematical and optimization and heuristic algorithms. Location of single and multiple facilities in existing and new layout design. Other topics include computerized layout planning, minimax location and discrete vs. continuous location planning. (Not open to students who have taken IE 321.) Prerequisite: OR 627 or OR 631.

Aleo listed under OR 621

IE 624 Computer-Augmented Cabe

Studies in Management Sclence

21/2:0:3
Cases involving problems in forecasting, inventory, scheduling, line balancing, maintenance, queuting, and similar industrial engineering and operations research discipines assigned. Students may witte their own computer programs or may use existing packages to analyze the cases and design tmproved alternatives. Written reports required. Prerequisites: IE 600, OR 627 and OR 628 .
Aleo lleted under OR 624

IE 636 Network Flows and Application*

21/2:0:3
Introduction to graphs and networks. Definition and fundamental principles of networks. Maximum-flow and minimum-cost modela in static and dynamic networks. Stochastic and activity networks. Applications include production-inventory probiems, piant location-allocation problems, regional transportation and traffic assignments, manufacturing processes. Prerequlsites: MA 561 and elther OR 627 or OR 631.

Also lleted under OR 838

IE 680 System Simulation!

21/2:0.3
Modeiling and aimulation of discrete stochastic systems. Generation of pseudo-random numbers, variates from discrete, continuous, theoretical and empirical distributions. Extenaive study of SIMSCRIPT, introduction to other languages. Students program, code and run several simulatlon models. Not open to students who have taken IE 380 . Prerequisites: IE 001 and MA 561 , or instructor's permission.
Aleo listed under OR 680

IE681 System SImuiation II*

$21 / 2.0 .3$
Advanced concepts of discrete simulation. Statistical aspects of simutation design, run length, efficiency. Methods for generation of nonuniform random variables, tncluding probability integral transtorm, rejection, composition techniques. Monte Carlo variance reducing techniques, including importance sampling, control variates and antithetic varlates. Application to physical problems. Prerequisites: OR 608 and IE 680.

Also ilsted under OR 681

IE 685 System Reliability

21/2:0:3
Structurai reliability, redundancy, bounds on reliability of complex systems. Repairable systems: Markov models, maintainability and availability. Optimization of spare parts fnventories, inspection intervals and replacement times. Fallure models: accumulated shocks and stress-strength-time. Marginel failures, dependent fallures. Prerequisite: MA 223 or MA 561 or equivalent.
Also lifgted under EL 617 or OR 685

LE 680 Component Reliability

21/2:0:3
Failure models for industrial components: exponentiel, Weibull, bognormel, gamma, Gumbel and other distributions. Failure and hazard rates, graphicel probabitity plots and maximumlikeiihood parameter estimation and testing. Sampting piane based on life tests and accelerated life tests. Serlal and paralle! analysis on components reliability. Prerequisite: MA 223 or MA $58 t$ or equivalent.
Also listed under EL 616 and OR 686
IE 700 System Eftectiveness*
21/2:0:3
Evaluation methodology in system analysis for decision. making process in selection of preferred solutions from set of competing alternatives. Discussions centered on origin and need of performance effectiveness, requirements and criteria, basic concapta, models, applications to real-world problems, computer methods. Prerequisites: IE601, OR 627 and OR628, or instructor's permission.
Also llated under OR 700

IE 716 Commerclal Data-Processing Sysiem Deskg

$21 / 2: 0,3$
Applications of unit record equipment and computers in systern design, including order writing, billing, sales analysis, accounts recelvable, inventory control, payroll and labor accounting, accounts payabie, general ledger. Laboratory use of data processing equipment, including the IBM 360 . Case studies. (Not open to students who have taken IE 316.) Prerequlsite: knowledge of computer programming.
Aiso listed under MG 718
IE 720 Optlmum Seeking Methods ${ }^{*} \quad 21 / 20: 3$
Algorithm construction and applications of computer-implemented search procedures. One-dimenaional searches, including Fibonacci and golden section search; quadratic and cubic convergent search. Multivariate methods, inctuding gradents, conjugate directions and vartable metric (e.g., DFP) methods. Constraints, penalty functions, SUMT. Senstitivity, convergence and program efficiency. Prerequisites: IE 601 and either OR 627 or OR 631.
Also Ilsted under OR 720

IE 727 Case Studles in

Management Sclence*
$21 / 200: 3$
Application of scientific and analytical methods to soiving management decision-making problems, drawn from current practica and literature. Prerequisites: OR 627 or OR 631, OR 628 or OR 650 .
Aleo listed under MG 727 and OR 727
IE 757 Technolcyy Transfer to
Developing Countries*
21/2:0.3
Levels of technology: village, intermediate, advanced. Mechanisms of technology transfer to less-developed countries. National and international means to etimulate or block transier. Ecologlcat, social, economic factors in technology seiection and utilization. Technology and political influence. Case studies of recently industrializing nations. (Not open to students who have taken IE 357.)
Al6o liated under MG 757 and SS 875
IE 758 Human Resource Development in Developing Countries*

21/2:0.3
Spectrum of technology-related manpower needs in liessdeveloped countries; education of engineers, technicians and skilled mechanics. Using foreign personnel, foreign schools, "brain-drain" problems. Economic consequences. Comparisons of educational systems of Western, Eastern and developing countries. Design of curricula to suit national needs. Role of technical assistance programs. Forecasting of human resource needs. (Not open to students who have taken IE 358.)
Also ilsted under MG 758 and SS 678
1E765 Human Factors in Engineering Destgn* $\quad 21 / 2: 0.3$ Study of research techniques that yield information important in men-machine systems design. Man's learning, problent solving, physiological and information processing capacities, performance under various environmental conditions. (Not open to students who have taken IE 365.) ?Terequisite: SS 189.

IE 775 Industrial Safety Engineering*
21/2:0.3
Analysis and design of industrial accident prevention, control and management systems. Effect of OSHA, Workmen's Compensation and environmental factors in implementing safery programs. Project work involves safety inspection, detection and control of hazards. (Not open to students who have teken IE 375.)

IE 776 Material Requirements Pianning*
21/2:0.3
Quantitetive models for enalysis of production and inventory management systems. Topics covered inctude bllt of materlal
structures, time-phased parts requirements, shop loading and capacity constraints, priority planning and control, and schedule regeneration. Development of computer-based MRP systems. (Not open to students who have taken IE 376.) Prerequisite: knowledge of computer programming.

IE 777 Manufaciuring Improvement Curves* $21 / 2,0: 3$ Development of learning-curve theory, analysis of various Improvement curve models and estimation of parameters. Applications of improvement curves are incorporated in evaluating work standards, wage incentives, training and labor turn-over cost, inventory controi, price policy and production schedules. (Not open to students who have taken IE 377.) Prerequisite: IE 606.

IE 778 Advanced Production Planning 21/2:0:3 Quantitative analysis of eggregate planning models using optimal, heuristic and search decision rules, Explosion and netting models for material and resource requirements. Algorithms for scheduling manpower for continuous operations. Selected topics in operational planning from recent research literature and assigned independent study. Prerequisite: IE 619.
Also listed under OR 778

IE 779 Advanced Work Systems Dorign

21/250:3
Study of work design with emphasis on parameters effecting instaliation of overall system. Advanced work sampling, workforce balancing, ergonomic work loads, incentive for machinecontrolled operations, computer-assisted planning of systems. Prerequisite: IE 606.

IE 646 Uban Systems Analysis*
21/2:0:3
The overall uban system. Modeling for predictlon and management of major components: poputation, economy, lend use, transportation network, facility location, governmental service systems. Cost-benefit viewpoint in social welfare context. (Not open to students who have taken IE 346, except with instructor's permission.) Prerequisite: OR 627 or equivalent.
Also llsted under OR 846

IE 852 Applied Regression and Analysls

 of Varlence21/2:0:3 Analysis of observed data by means of regression and analysis of variance and covariance. Systematic treatment of analysis of multiple classifications involving fixed and random effects and crossed and nested varisbies of classification. Regression analysis and its reletion to analysis of variance. Prerequisites: MA 553 and OR 608.
Also llated under OR 852
IE853 Design of Experiments 21/20:3 Basic designs for scientific end industrial experiments: singlefactor and multiple-factor completely randomized designs, randomized blocks, incomplete blocks, orthogonal contrasts, general regression approach, Latin and higher squares, quantitative factors-orthogonal polynomlals, complete and fractional factorial experiments including confounding methods. Introduction to statlsticat packages: SPSS and BMDP. Prerequisite: OR 608.
Also llsted under OR 853

IE 911.912 Selected Topics in

Industrial Engineering t , II*
each $21 / 2.0: 3$
Areas not covered in other courses. Specific topics vary according to instructor, who may be a visiting professor. Topics and prerequisites announced during term prior to offering.

IE 920 Research Seminar in Operations Research

 and Industrial Engineering*21/2:0.3
Examination of selected advanced topics at research frontlers of department's graduate program areas. Presentations by
graduate students, facufty, visiting scientists. Prerequisite: candidacy status for a graduate degree.
Also listed under OR 920
JE 930-931 Readings in Industrial Enginearing I, II
each 3 units Individual reading of selected papers and current literature in specialized area of study, guided by faculty member. Prerequisite: approval of adviser, instructor and department head.

IE 935 Engineering Projects Related to Public Administration
each 3 units
See Cooperative Program with New York University's Graduate School of Pubiic Administration for details.

IE 997 Thesla for Degree of
 Master of Sclence

each 3 units
Origlnal investigation in topic chosen by student. Conferences and progress reports required during work and final written report required; oral examination may be requested by department. Registration and degree credit beyond first six units require separate approval. Prerequisites: degree status and approval of supervising professor, adviser and department head.

IE 988 Project for Degree of Engineer
each 3 units
Post-master's investigation of significant problem, utilizing modern techniques of enalysis and design. Project to be selected and developed in consulation with faculty member. Written report required, after which student is examined orally. Six units must be accumulated. Prerequisites: degree status and supervising professor's approval.

IE 9 DP8 Dissertation for Degres of
 Doctor of Philosoplyy

each 3 unite
Doctoral dissertation must give evidence of and embody results of extended research in specific field of industrial englneering, constituting original contribution. Candidate required to teke oral examination on subject of thesls and on related topics. Minimum of 24 units required. Prerequisite: compiation of qualifying examination and guidance committee's approval.

The following courses listed under Operations Research are also considered in-program courses for Industrls: Engineering;

OR 608 Statistics
OR 627 Operations Research: Deterministic Models
OR 628 Operations Reseerch: Stochastic Models
OR 631 Linear Programming
OP 632 Nonlinear Programming
OR 633 Integer Programming
OR 634 Dynamic Programming
OR 635 Advanced LInear Programming
OR 650 Queuing Systems I
OR 651 Queuing Systems II
OR 665 Microeconomlc Models
OR 666 Macroeconomic Models
OR 671 Business and Economic Forecasting
OR 673 Time Series: Forecasting and Control
OR 674 Econometric Models and Methods
OR B51 Stochastic Processes
OR 870 Games and Decisions

FACULTY

Norbert Hauser, Professor of Industrial Engineering and Management Science and Dean of Management B.M.E., Cooper Union; M.I.E., Eng. Sc.D., New York University
Modeling of social systems, computer simutation, quality control

John T. Chu, Professor of Operations Research B.S., University of Chekiang (China); M.S., Ph.D., Iowa State University
Managerial decisions, behavioral approaches, national and international problems

Walter Helly, Professor of Operations Research B.A., Cornell University; M.S., University of Ilinois; Ph.D., Massachusetts Institute of Technology Urban systems, stochastic modeling, vehicular traffic

John H.K. Kao, Professor of Industrial Engineering B.S., National Central University (China); M.S., D.Eng.Sc., Columbia University

Applied statistics, quality control and reliability, operations research in nuclear engineering

Joachim I. Weindling, Professor of Operations Research and System Engineering, and Director of Operations Research Program
B.M.E., City College of New York; M.S., Ph.D., Columbia University; Professional Engineer (N.Y., PA.)
Mathematical programming, optimum design, economic evaluation

Herman Grau, Associate Professor of Industrial Engineering
B.M.E., Polytechnic Institute of Brooklyn; M.I.E., New York University
Methods, work measurement, industrial management, project management

Seymour Kaplan, Associate Professor of Operatlons Research, Director of Economic Systems Program B.S., Newark College of Engineering; M.S., Ph.D., New York University
Economic modeling, linear programming
Ravinder Nanda, Associate Professor of Industrial Engineering and Director of Industrial Engineering Program
B.S., Banaras Hindu University (India); M.S., Ph.D., University of llinois
Production planning, operational control systems, facility location and layout
A. George Schillinger, Associate Professor of Management and Operations Research
B.E.E., City College of New York; M.S., Eng.Sc.D., Columbia University
Technology, management, policy studies, stochastic systems

ADJUNCT FACULTY

Geoffrey Gordon, Adjunct Professor
B.Sc. (Physics), B.Sc. (Mathematics), M.Sc. (Mathematics), University of London (England)

Samuel Gorenstein, Adjunct Professor
B.B.A., City College of New York; Ph.D., New York University

Peter M. Meler, Adjunct Professor
B.S., Swiss Federal Institute of Technology; M.Sc., Ph.D., University of Massachusetts

Armold Ockene, Adjunct Professor
B.E.E., City College of New York; M.S., Columbia University

Lawrence W. Parks, Adjunct Professor
B.S., M.S., Ph.D., Polytechnic Institute of Brooklyn

Robert Marose, Adjunct Assistant Professor
B.S., University of Notre Dame; M.S., Stevens Institute of Technology; Ph.D., Polytechnic Institute of New York

Andrew Sipos, Adjunct Assistant Professor Engineering Diploma, Technical University, Budapest; M.S.C.E., University of Pennsylvania (P.E.)

Moira LeMay, Adjunct Associate Professor B.S., Queens College of City University of New York; M.S., Ph.D., Pennsylvania State University

Young W. Yoon, Adjunct Associate Professor B.A., Yonsei University; M.B.A., New York University; Ph.D., Polytechnic Institute of New York

Michael P. London, Lecturer
B.S., M.S., New York University

Martin Stemberg, Lecturer
B.S., Polytechnic Institute of New York

INFORMATION MANAGEMENT

Information management deals with information needed by management for decision making. It includes, but is not limited to, electronic data processing (EDP), data base management (DBM) and management information systems (MIS). Computers are widely used to provide management with timely information needed to make decisions.

Currently, there is great demand for graduates in this field. Industries in the metropolitan New York area, such as banking, finance, retailing, utilities and hospitals, as well as manufacturing, have been unable to meet employment requirements in information management for the past several years. A typical position calls for technical competence and the ability to work closely with computer operations personnel, auditors, consultants and user department representatives, in addition to other project team members.

Polytechnic trains information management professionals who, after graduation, are usually assigned individual or team tasks which they are expected to complete independently, and with minimal supervision.

UNDERGRADUATE PROGRAM

Polytechnic offers a program of study, administered by the Division of Management, leading to the bachelor of science degree in information management. Students are offered both day and evening courses on a full- or part-time basis.

The program's objective is to provide students with the educational background and skills to qualify for entry level positions as applications programmers or analysts in the business world. Unlike computer science, where mathematics, science and software development are emphasized, information management is business oriented. The student must be aware of the types of problems encountered by management which require timely information.

This in-depth program enables interested students to move into project leadership positions within one to five years of entering industry without additional course work. Finally, the program will provide a solid foundation for the academically inclined student who wishes to pursue graduate study.

Requirements for the Degree of Bachelor of Science in Information Management

The curriculum, requiring 128 credits for graduation, consists of four components: computing, management/system analysis, arts and sciences, and electives.

Credits

Computing: CS 111, CS 203, CS 204, CS 205, CS 211, CS 217, IE 316, MG 736

Management/System Analysis: IE 252, IE 254, IE 300, IE 314, IE 320, MG 300, MG 401, MG 630, MG 606

Arts and Sciences: HU 101, HU 110, HU 200, SS 104, SS 189, SS 199, SS 251, SS 252, MA 101-102, MA 231, PE 101-10435

Electives:
Computing 9
Two of the following: IE 376, IE 380, MG 664,
MG 851

One of the following: CM $091-092$
PH 091-092, LS 105-106, LS 115
Humanities/Social Science 6
$\begin{array}{rrr} & & \frac{13-15}{42} \\ \text { Total Electives } & \\ & \text { Total } & 128\end{array}$

ROTC students should note that freshmen and sophomores may substitute zero-credit military science courses for PE 101-104 (physical education); juniors and seniors may substitute three of the following two-credit courses: MS 131, 142, 143, 146, for six credits of technical electives.

Graduate courses may be taken as electives by qualified juniors and seniors with at least a B average, who obtain their adviser's approval. If the total number of credits exceeds those required for the bachelor's degree, these graduate credits may be credited toward a graduate degree in accordance with current Polytechnic policy.

Four-Year Program. A typical program sequence is shown covering eight semesters. Students may rearrange courses and increase or decrease load per semester to suit their educational needs, provided prerequisites are not violated.

COOPERATIVE PROGRAM \& INTERNSHIP

A five-year cooperative education program is available that permits the student to integrate academic courses and career preparation in order to develop an understanding regarding their career choice and realistically evaluate their career decision. While earning the B.S. degree the student is also provided with a chance to earn up to 75 per cent of college expenses.

Students who wish a less intensive work experience as part of their education, may wish to enroll in a summer internship with their adviser's permission.

TRANSFER STUDENTS

Transfer students from other accredited institutions are accepted into the B.S. program after evaluation of their transcripts by a faculty adviser. Graduates of technology programs may be able to fulfill the bacheIor's degree requirements in two to three and one-half years, depending upon the scope and level of their previous education.

Typical Course of Study for the Bachelor of Science Degree in Intormation Management

Freshman Year

First Semester		Hours/Week		
No.	Subject	Cl.	Lab.	Cr.
CS 111	Comp. Progr. I	3	0	3
HU 101	College Composition	3	0	3
MA 101	Calculus 1	4	0	4
SS 251	Microecon.	3	0	3
SS 104	Main Themes in Cont.			
	Wrid History	3	0	3
PE 101	Phys. Ed.	0	2	$\underline{0}$
				16

Second Semester		Hours/Week		
No.	Subject	Cl.	Lab.	Cr.
MA 102	Calculus II	4	0	4
SS 252	Macroecon.	3	0	3
CS 211	COBOL Progr.	3	0	3
HU 200	Introd. to Lit.	3	0	3
PE 102	Phys. Ed.	0	2	0
	Elective			$\frac{3}{16}$

Sophomore Year

Senior Year

IE 314	Mod. of Soc. Sys.	3	0	3	SS 199	Org. Behavior	3	0	3
MG 630	Operations Mgt.	3	0	3	MG 401	Senior Project	3	0	3
MG 606	Managerial Finance	3	0	3	MG 736	Anal. \& Desg. Mgt.	3	0	3
	Electives			7		Electives			7
				16					16

FACULTY

The program is administered by the Division of Management. The faculties of industrial engineering, operations research, management and computer science, which play major roles in information management, are listed bejow.

Norbert Hauser, Professor of industrial Engineering and Management Science
Dean of Management
B.M.E., Cooper Union; M.I.E., Eng.Sc.D., New York University
Modeling of social systems, computer simulation, quality control

John T. Chu, Professor of Operations Research B.S., University of Chekiang (China); M.S., Ph.D., lowa State University
Managerial decisions, behavioral approaches, national and international problems

Walter Helly, Professor of Operations Research B.A., Cornell University; M.S., University of Ilinois; Ph.D., Massachusetts Institute of Technology Ufban systems, stochastic modeling, vehicular traffic

Bruce L. Hicks, Visiting Professor of Computer Science
B.S., M.S., Ph.D. (Physics), Callfornia Institute of Technology
Educational applications of computers, computer graphics

John H.K. Kao, Professor of Industrial Engineering B.S., National Central University (China); M.S., D.Eng.Sc., Columbia University

Applied statistics, quality control and reliability, operations research in nuclear engineering

Melvtn Klerer, Professor of Electrical Engineering and Computer Science
B.A., M.S., Ph.D., New York University Programming systems, languages, artificial intelligence

Arthur E Laemmel, Professor of Electrical Engineering B.E.E., Polytechnic Institute of Brooklyn Computer architecture, coding

Willard A. Lewls, Visiting Professor of Management Professor Emeritus, New York University B.A., New York University; A.M. in Public Law, Columbia University; LLB., Ph.D., New York University Industrial relations, legal environment of business, management and organizational behavior

Stanley Preiser, Professor and Dean of the Westchester Center
B.S., CCNY; M.S., Ph.D., New York University Numerical analysis, applied mathematics, algorithms, system performance evaluation

Edward J. Smith, Professor of Electrical Engineering and Director of Division of Computer Science B.E.E., Cooper Union; M.E.E., D.E.E., Polytechnic Institute of Brooklyn
Computer organization, switching and automata
Martin L. Shooman, Professor of Electrical Engineering and Computer Science
S.B., S.M., Massachusetts Institute of Technology; D.E.E., Polytechnic Institute of Brooklyn Software engineering, system reliability and safety

Joachim I. Weinding, Professor of Operations Research and Director of Operations Research Program B.M.E., CCNY; M.S., Ph.D., Columbia University; Professional Engineer (N.Y., PA.)
Mathematical programming, optimum design, economic evaluation

Anthony J. Wiener, Professor of Management and Director of Poltcy Studies
A.B., J.D., Harvard University

Long-range planning, public policy studies, political, economic and social environment of business, technology management and assessment

Hemman Grau, Associate Professor of Industrial Engineering
B.M.E., Polytechnic Institute of Brookiyn;
M.I.E., New York University

Methods, work measurement, industrial management, project management

Ronald J. Juels, Visiting Associate Professor of Computer Science
B.E.E., M.E.E., Polytechnic Institute of Brooklyn; D.Sc., Stevens Institute

Computer architecture, microprocessor systems
Seymour Kaplan, Associate Professor of Operations Research and Director of Economic Systems Program
B.S., Newark College of Engineering; M.S., Ph.D., New York University
Economic modeling, linear programming
Aaron Kershenbaum, Associate Professor of Electrical
Engineering and Computer Science
B.S., M.S., Polytechnic Institute of Brookiyn;

Ph.D., Polytechnic Institute of New York
Computer communications, algorithms
Harold G. Kautman, Associate Professor of Management
B.M.E., Cooper Union; M.I.E., Ph.D., New York University Career management, science and engineering manpower, obsolescence and continuing education

Ravinder Nanda, Associate Professor of Industria! Engineering and Director of Industrial Engineering Program
B.S., Banaras Hindu University (India); M.S., Ph.D., University of mlinois
Production planning, operational control systems, facility location and layout

Henry Ruston, Associate Professor of Electrical Engineering and Computer Science B.S.E. (Math), B.S.E. (EE), Ph.D., University of Michigan; M.S., Columbia University

Software engineering, programming, circuit theory
A. George Schillinger, Associate Professor of Management and Operations Research B.E.E., CCNY; M.S., Eng.Sc.D., Columbia University Technology management, policy studies, stochastic systems
A. David Klappholz, Assistant Professor of Computer Science
B.S., Massachusetts Institute of Technology;
M.S.E., Ph.D., University of Pennsylvania

Parallel processing, computer architecture
Jamshed H. Mirza, Assistant Professor of Computer Science
B. Tech., Indian Institute of Technology, (Khoragpur, India); M.S., Ph.D., Polytechnic Institute of New York Computer architecture, pipeline processing

Norman Rubin, Assistant Professor of Computer Science
B.S., CCNY; M.A., Ph.D., New York University Artificial intelligence, programming languages, compilers

David A. Schrier, Assistant Professor of Management and Director of Organizational Behavior Program B.S., Fiorida State University; M.B.A., D.B.A., George Washington University
Organization development and training
Dipayan Bhattacharya, Academic Associate B.A., M.A., Jadavpur University (India); M.S. (Transportation), M.S. (Management), M.S. (Organizational Behavior), Polytechnic Institute of New York Statistics, economics, financial institutions

INTERDISCIPLINARY STUDIES

The purpose of the interdisciplinary studies program, sponsored by the Department of Humanities and Communications and the Department of Social Sciences, is to enhance the humanistic side of the student's education by promoting courses, seminars and special lectures demonstrating the fruitfulness of interdisciplinary approaches to human knowledge. IS 140-141 is a year-long, unified humanities/social sciénces sequence intended for freshman students. This sequence may be taken in place of the HU200ISS 104 requirement for undergraduates. IS.145 and IS 146 may be taken as advanced humanities/social sciences electives.

COURSES

I\$ 140 Langusge and Communication

A study of types of language and modes of communication, including animal (bee, chimpanzee) and human communication, language development in children and the "languages" of music, art, literature and engineering (the Brooklyn Bridge). Readings, films, group projects and reporls, museum visits, expository and creative writing.

IS 141 The Self and Society

3:0:3
An exploration of the relationship between the individual and society, language as a vehicle of culture, cultural variety and the significance of cultural models (from Homer's Odyssey to Orwelt's 1984 and O'Neilf's proposed space colony). Readings, films, group projects and reports, museum visits, writing. Prerequisite: IS 140 or permission of instructor.

IS 145 The American, This New Man 3:0.3
An examination of the changing pattern of nationalism in the United States and the changing self-definition of the American in response to forces from within the country and from without -as found in literary, artistic and historical sources from the 17th century to the present.

IS 146 Brooklyn: History and Cutture 3:0:3
An interdisciplinary exploration of the evolution of Brooklyn from a coliection of aboriginal communities to a European colony and eventually an American city. Stressing social, political, economic and cultural factors, this course covers the physical growth, political evolution, economic development, transportation networks and cultural life of evolving Brookiyn.

PARTICIPATING FACULTY

Donald Hockney, Professor and Head of Humanities Director of Interdisciplinary Studies Program

Marvin E. Gettleman, Professor of Social Sciences
Frederick C. Kreiling, Professor of Social Sciences
Duane DeVries, Associate Professor of Humanities
Pamela Kramer, Associate Professor of Social Sciences
I. Leonard Leeb, Associate Professor of Social Sciences

Thomas B. Settle, Associate Professor of Sociai Sciences

Harley S. Thompson, Associate Professor of Humanities

LIFE SCIENCES

In recent years, Polytechnic has developed strengths in the life sciences that complement those in its longestablished teaching and research programs in engineering and the physical sciences. Specific curricula and areas of concentration, including premedicine, biology, biochemistry, environmental sciences, bioengineering and laboratory techniques are designed to offer exceptional preparation for medical, dental and other professtonal careers, as well as for graduate study in the life sciences and a wide variety of interdisciplinary programs. Qualified students have extensive opportunities to participate in faculty research programs, special projects and independent study.

Students have the fiexibility of selecting a program of study best suited to their individual needs:

1. A biology curriculum, essential for graduate studies and a career in biology.
2. An interdisciplinary, premedicine curriculum, preparing for a professional career in the healthrelated sciences.
3. A career-oriented curriculum to provide skilis required for laboratory work in a research, hospital or industrial setting.
4. A life sciences-computer curriculum, in which computer technology may be applied to a career in healthrelated fields. This course of study results in the student achieving a bachelor of science in life sciences, with a strong concentration in computers, at the end of four years. With an additional year, the student can fulfill the requirements for a master's degree in computers.
5. A life sciences-electrical engineering curriculum, to prepare for careers in which engineering technology may be applied to studies of living systems. This curriculum in life science gives the student in-depth exposure to electrical engineering, equivalent to that of a double major, and leads to a bachelor of science in life sciences. The student can fulfill the requirements for a master's degree in electrical engineering with only one additional year of study.

GENERAL REQUIREMENTS FOR ALL CURRICULA

Part of the biology requirement may be fulfilled by biochemistry courses, CM 201, 202, 204. Technical electives must include one from a group including electronics, living system analysis or research instrumentation; e.g. BE 201-202, CH 841, EE 370 or IE 314. A second course must be in the area of com. puters. Other technical electives should be chosen in consultation with the life sciences advisers. A total of 36 credits in humanities, social sciences and modern language are required in all curricula except the life sciences-electrical engineering program. Of these, a minimum of 15 credits are required in humanities, including HU 101, HU 200 and a course in technical writing. A minimum of 15 credits are also required in social sciences, including SS 104 and a nine-credit concentration in a specific area of study. Six credits of language are required in continuation of three years of a high school language. Four years of a language in high school eliminates this requirement. Students with fewer than three years of a modern language are required to take two years of language. Advanced language courses in literature may be used to fulfill a literature concentration. IS 140-141 can be substituted for HU 200 and SS 104.

BIOLOGY

Biology is concerned with the study of life in all of its manifestations-from the simple to the complex, from the invisible to the macroscopic and from the virus to the human. To move beyond the definitions of life to the understanding of life's fundamental nature, one must examine the characteristics of living systems, including growth, heredity and reproduction, metabolism, energy production and utilization, responsiveness, and tocomotion. Further, one must probe both the structure and function of living matter at the molecular, cellular and organismal levels. An understanding of structure and function leads to a generalization of the principles involved and an understanding of how living systems operate. Indeed, viewpoints and techniques of biology, chemistry and physics all contribute to our study and understanding of living systems at all levels.

A core curriculum provides basic concepts and principles in modern biology and offers studies on a molecular, subceliular, cellulat, organismal and population level. This training develops biological knowledge and skill with special competence in molecular biology and genetics, as well as in cellular, microbial, developmental and physiological studies. Despite the celfular emphasis of the curriculum, the organism is kept clearly in focus. Laboratory experiments utilize modern techniques and sophisticated instrumentation. Students are encouraged to design and carry out individual projects.

Students majoring in the life sciences are required to complete courses in biology, chemistry, physics and mathematics.

Biology Curriculum for Bachelor of Science Degree in Life Sciences

Freshman Year

First Semester			Hours/Week	
No.	Subject	Cl .	Lab.	Cr
CM 101	General Chemistry I	$21 / 2$	0	21/2
CM 111	General Chemistry Lab. ${ }^{\text {a }}$	0	$11 / 2$	1/2
LS 105	General Biology 1	3	0	3
LS 115	General Biology Labl	1	3	2
MA 101	Calculus I	4	0	4
HU 101	College Composition	3	0	3
				15

SecondSernester Hours/W				
N c.	Subject	Cl .	Lab.	Cr
CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$
CM 112	Chemistry Lab. II	0	$11 / 2$	1/2
LS 106	General Biology It	3	0	3
LS 116	General Biology Lab II	1	3	2
MA 102	Calcutus II	4	0	4
SS 104	Contemporary World History	3	0	3

Sophomore Year

LS 103	Developmental Biology I	3	3	4
PH 101	Physics I	3	0	3
MA 231	Statistical Methods	2	3	3
HU 200	Introduction to Literature	3	0	3
	Elective	3	0	3
			16	

LS 104	Deveiopmental Biology II	3	3	4
PH 102	Physics if	$31 / 2$	$11 / 2$	4
	Technical elective	3	0	3
	Hum./Soc. Sci./Mod. Lang.	5	0	6
				17

Junior Year				
LS 132	Ceil Physiology	3	3	4
PH 103	Physics !ll	$21 / 2$	$11 / 2$	3
CM 122	Organic Chemistry	3	0	3
CM 124	Organic Chemistry Lab. I	$1 / 3$	5	2
	Hum.JSoc. Sci./Mod. Lang.	3	0	$\underline{3}$
				15

LS 112	Fundamentals of Genetics	3	3	4
CM 164	Phys. Chem. of Living Systems	3	0	3
CM 123	Organic Chemistry II	3	0	3
CM 125	Organic Chemistry Lab. It	$1 / 3$	5	2
	Hum./Soc. Sci./Mod. Lang.	6	0	$\frac{6}{18}$

Senior Year

CM 118	Chemical Equilibria	$1 / 3$	5	4
LS 130	Organismal Physiology	3^{1}	3	4
	Hurn./Soc. Sci./Mod. Lang.	6	0	6
LS 310	Seminar in Biology	1	0	$\frac{1}{15}$

Environmental Biology	$21 / 2$	$\pm 1 / 3$	3
Biology elective	3	3	4
Technical elective	3	0	3
Elective	1	0	1
Hum./Soc. Sci./Mod. Lang.	6	0	$\frac{6}{77}$

Total credits required for graduation: 128

PREMEDICINE

The curriculum in premedicine is designed to prepare the student to meet the challenges in the life sciences, medicine and the medically oriented sciences. It provides a well-rounded program in the humanities and social sciences as well as a substantial preparation in the basic sciences. The individual student may shape a course of study so as to build a firm foundation for
professional study in medicine, dentistry, osteopathy, veterinary medicine, optometry, podiatry and pharmacy.

Students in the ROTC program may substitute MS 131, 142, 143, 146 for six credits of electives during the junior or senior year.

Promedicine Curricutum for Bachelor of Sclence Dagree in Lite Sciences

Freshman Year

First Semester			Hours/Week	
No.	Subject	Ci.	Lab.	Cr.
CM 101	General Chemistry I	$22^{1 / 2}$	0	$21 / 2$
CM 111	General Chern. Lab. I	0	$11 / 2$	$1 / 2$
LS 105	General Biology I	3	0	3
LS 15	General Biology Lab. 1	1	3	2
HU 101	Coilege Composition	3	0	3
SS 104	Contemp. Modern History	3	0	3
	Modern Language	3	0	3
				17

Second Semester			Hours/Week	
No.	Subject	C.	Lab.	Cr .
CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$
CM 112	General Chemistry Lab. II	0	11/2	1/2
LS 106	General Biology II	3	0	3
LS 116	General Biology Lab II	1	3	2
HU 200	Intro. to Literature	3	0	3
	Soc. Sci./Mod. Lang.	6	0	6
				$\$ 7$

Sophomore Year

MA 101	Caiculus I	4	0	4
PH 101	Physics I	3	0	3
	Biology elective	3	3	4
	Hum./Soc. Sci./Mod. Lang.	3	0	3
	Elective	3	0	$\frac{3}{17}$

MA 102	Calculus it	4	0	4
PH 102	Physics II	$31 / 2$	$11 / 2$	4
	Elective	3	0	3
	Hum./Soc. Sci./Mod. Lang.	3	0	3
	Technical elective	3	0	3
				17

Junior Year

CM 122	Organic Chemistry	3	0	3
CM 124	Organic Chemistry Lab.:	$y / 10$	5	2
PH 103	Physics	$21 / 2$	$11 / 2$	3
MA 231	Statistical Methods 1	2	3	3
	Hum./Soc. Sci./Mod. Lang.	3	0	3
	Elective	3	0	$\frac{3}{7}$
				17

CM 123	Organic Chemistry il	3	0	3
CM 125	Organic Chemistry Lab. it	\% $\%$	5	2
CM 164	Phys. Chem. of Living Systems		0	3
	Hum/Soc. Sci./Mod. Lang.	3	0	3
	Technical elective	2	0	2
	Elective	3	0	3

Senjor Year

CM 1188	Prin. \& Applic. of Chem. Equil.	$21 / 3$	$\mathbf{5}$	4
	Technical alective	2	0	2
	Humn./Soc. Sci./Mod. Lang.	3	0	3
	Elective	4	0	4
LS 310	Seminar In Biology	1	0	1
				14

Hum_Soc. Sci./Mod. Lang.	3	0	3
Technical elective	2	0	2
Elective	8	0	$\underline{8}$
			13

Total credits required for graduation: 128

CAREER-ORIENTED CURRICULUM

The career-oriented curriculum permits the student to develop expertise in a variety of laboratory skilis such as: microscopy, chromatography, electrophoresis, centrifugation and radioisotopic methods, etc., which are required in research, hospitals and the industrial sectors. Within the curriculum, students select a subspecialty area such as management, technical
writing, environmental biology or bioengineering, which further enhances the opportunity to achieve meaningful employment on graduation or to complete successfully an M.S. in one additional year, as well as to continue with graduate or professional school should they so desire.

Career-Oriented Curriculum for Bachelor of Science Degree in Lite Sciences

Freshman Year

First Semester	Hours/Week			
No.	Subject	Cl.	Lab.	Cr.
CM 101	General Chemistry I	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab I	0	$11 / 2$	$1 / 2$
MA 101	Calculus I	4	0	4
LS 105	General Biology :	3	0	3
HU 101	College Composition	3	0	3
SS 104	Contemp. World History	3	0	3
				16

Second		Semester	Hours/Week		
No.	Subject	CI.	Lab.	Cr.	
CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$	
CM 112	General Chemistry Lab. II	0	$11 / 2$	$1 / 2$	
MA 102	Calculus II	4	0	4	
LS 106	General Biology II	3	0	3	
HU 200	Intro. to Literature	3	0	3	
	Hum.Soc. Sci/Mod. Lang.	3	0	3	
				16	

Sophomore Year

LS 155	Lab. Techniques \&			
	Instrumentation in Biology I	1	9	4
CM 122	Organic Chemistry I	3	0	3
CM 124	Organic Chemistry Lab. I	$3 / 10$	5	2
PH 101	Physics I	3	0	3
	Hum./Soc. Sci./Mod. Lang.	3	0	$\frac{3}{15}$

| LS 156 | Lab. Techniques \& | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Instrumentation in Biology II | 1 | 9 | 4 |
| CM 123 | Organic Chemistry II | 3 | 0 | 3 |
| CM 125 | Organic Chemistry Lab. II | $3 / 10$ | 5 | 2 |
| PH 102 | Physics II | $31 / 2$ | $11 / 2$ | 4 |
| | Hum./Soc. Sci./Mod. Lang. | 3 | 0 | $\frac{3}{16}$ |

Junior Year

LS 130	Organismal Physiology	3	3	4
CS 1111	Computer Programming 1	3	0	3
MA 231	Statistical Methods:	2	3	3
	Hum./Soc. Sci./Mod. Lang.	3	0	3
	Professional subfield	3	0	$\frac{3}{}$
				16

LS 121	Clinical Microbiology	3	3	4
	Biology elective	3	3	4
PH 103	Physics	$21 / 2$	$11 / 2$	3
	Hum./Soc. Sci./Mod. Lang.	3	0	3
	Professional subfield	3	0	$\frac{3}{17}$
				17

Senior Year

LS 160	Histological Techniques	3	3	4
LS 310	Seminar in Biology	1	0	1
	Professional subfield	3	0	3
	Hum./Soc. Sci/Mod. Lang.	6	0	6
	Elective	2	0	2
				16

Biology elective	3	3	4
Professional subfield	3	0	3
Hum./Soc. Sci./Mod. Lang.	3	0	6
Elective	6	0	$\frac{3}{16}$

LIFE SCIENCES-COMPUTER SCIENCE

Life sciences-computer science is a five-year interdisciplinary program designed for students interested in the utilization of computer sciences in a career in the life sciences. Participants achieve a bachelor's degree in life sciences after four years and a master's degree in computer science with but one additional year. The four-year undergraduate curriculum in life sciences includes in-depth studies in biology, a strong concentration in computer science and demonstrates how computers can be utilized in the analysis and
understanding of phenomena in living systems. Consult the computer science section of the catalog for details of the master's program in computer science. A 2.7 grade point average in technical subjects will autornatically admit the student into the M.S. in computer science program without deficiencies.

See avaitable M.S. curricula under course requirements for M.S. in electrical engineering or computer science.

Five-Year B.S.-M.S. Program in Life Sciences-Computer Science

Freshman Year

First Semester			Hours/Week	
No.	Subject	Cl .	Lab.	C?
LS 105	General Biology \dagger	3	0	3
LS 115	General Biology Lab. 1	1	3	2
CM 101	General Chemistry !	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab. I	0	11/2	1/2
MA 101	Calculus :	4	0	4
HU 101	College Composition	3	0	3
				15

Second	Semester		Hours/Week	
No.	Subject	Cl.	Lab.	C.

Sophomore Year

PH 101	Physics I	3	0	3
CS 111	Computer Programming I	3	0	3
	Biology elective	3	3	4
HU 200	Introduction to Literature	3	0	3
	Soc. Sci.	3	0	$\frac{3}{46}$

PH 102	Physics H	$31 / 2$	$11 / 2$	4
CS 203	Computer Programming il	3	0	3
CS 236	Switching Clrcuits \& Digital			
	Systerns	3	0	3
	Hum. Soc . Sci/Mod. Lang.	6	0	6

Junior Year

PH 103	Physics III	$21 / 2$	$11 / 2$	3
CM 122	Organic Chemistry !	3	0	3
CM 124	Organic Chemistry Lab !	\%	5	2
CS 204	Data Structures	3	0	3
CS 205	Assembly \& Machine			
	Language Programming	3	0	3
	Hum./Soc. Sci./Mod. Lang.	3	0	3

CM 123	Organic Chemistry II	3	0	3
CM 125	Organic Chemistry Lab II	y.	5	2
CS 237	Intro. to Computer Architect.	3	0	3
CS 297	Computer Laboratory !	1	3	2
	Biology elective	3	3	4
	Hum./Soc. Sci./Mod. Lang.	3	0	3
				$\frac{17}{17}$

Senior Year

CS 299	Computer Laboratory II	1	3	2
MA 231	Statistical Methods I	2	3	3
IE 314	Modeting of Social System I	3	0	3
	Qiology elective	3	0	3
	Hum./Soc. Sci./Mod. Lang.	6	0	6
				17

	Biology elective	3	3	4
LS 310	Bioiogy elective	3	3	4
	Seminar in Biology	1	0	1
	Hum./Soc. Sci/JMod. Lang.	6	0	6
				$\underline{15}$

Total credits required for graduation: 128
Soe the graduate computer program section of the cataiog for details of the fifth year.

LIFE SCIENCES-ELECTRICAL ENGINEERING

A five-year interdisciplinary program is offered that leads to the degrees of bachelor of science in life sciences, with a concentration in electrical engineering after four years and a master of science in electrical engineering with one additional year. This life sciences program includes a strong orientation in electronic instrumentation, computer programming, control systems, electromagnetics and systems analysis, which permits the student to complete a master's degree in electrical engineering within one additional year beyond the B.S. in life sciences. In addition to providing the necessary prerequisites for entry into ad-
vanced study in life sciences, it offers in-depth study of electrical systems. This course of study involves 136 credits. It is thus a synthesis of two degree programs and provides health-related scientists and practitioners with a new dimension and outlook in the definjtion of the function of living systems. A 2.7 grade-point average in technical subjects will guarantee admission into the M.S. in electrical engineering program without undergraduate deficiencies. Consult the graduate elec. trical engineering section of the catalog for details of the master's curriculum.

Five-Year B.S.-M.S. Program in Life Sciences-Electrical Engineering

Freshman Year

First Semester			Hours/Week	
No.	Subject	Cl .	Lab.	Cr.
LS 105	General Btology :	3	0	3
LS 115	General Biology Lab. I	1	3	2
CM 101	General Chemistry 1	21/2	0	$21 / 2$
CM 111	General Chemistry Lab. 1	0	$11 / 2$	1/2
MA 101	Calculus I	4	0	4
HU 101	College Composition	3	0	3
SS 104	Contemporary World History	3	0	3
				18

Second	Semester	Hours/Week			
No.	Subject	Cl.	Lab.	Cr.	
LS 106	General Biology II	3	0	3	
LS 116	General Btology Lab HI	1	3	2	
CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$	
CM 112	General Chemistry Lab. II	0	$11 / 2$	$1 / 2$	
MA 102	Calculus $\\|$	4	0	4	
HU 200	Introduction to Literature	3	0	3	
	Social Science	3	0	3	
				18	

Sophomore Year

MA 231	Statistical Methods	2	3	3	MA 104	Appl. Diff. Equations	3	0	3
PH 101	Introductory Phystes I	3	0	3	PH 102	General Physics II	$31 / 2$	$11 / 2$	4
CM 122	Organic Chemistry	3	0	3	CM 123	Organle Chernistry 11	3	0	3
CM 124	Organic Chemistry Lab. I	y_{6}	5	2	CM 125	Organic Chemistry Lab. H	y_{10}	5	2
	Humanities	3	0	3	CS 111	Intro. to Programming	3	0	3
	Bioiogy elective	3	3	4		Hum./Soc. Sci./Mod. Lang.	3	0	3
				18					18

Junior Year

	Biology Elective	3	3			Biology elective	3	3	4
MA 103	Caicujus lil	3	0	3		Biology elective	3	3	4
EE 101	Electrical System !	3	0	3	EE 102	Electrical System II	3	0	3
EE 193	Soph. Elec. Engineering Lab I	0	3	1	EE 194	Soph. Elec. Engineering Lab it	0	3	1
PH 103	General Physics III	$21 / 2$	$11 / 2$	3		Hum/Soc. Sci/Mod. Lang.	6	0	6
	Hurn./Soc. Sci./Mod. Lang.	3	0	3					18
				17					

Senior Year

UNDERGRADUATE COURSES

LS 103-104 Developmental Biology I, II
each 3:3:4
Analysis of progressive, orderly changes which occur in development. Nature and mechanisms of differentiation, particularly in relation to cellular and embryonic transformations. Biochemistry and relation of inductors to metabolism. Role of cellular environment in differentiation. Relationship of development to genetic factors, immunity, evolution. Prerequisites: LS 106, 116. Lab charge: $\$ 40$ each.

LS 105-106 General Biology I, 11
each 3:0:3
Fundamentals of biology. Physical, chemical, biochemical bases of life on various organtzational levels. Cellułar morphology, complementarity of form and function. Reproduction, development, genetics. Homeostasis, regulation, integration, coordination. LS 105 prerequisite: high school chemistry. LS 106 prerequisite: LS 105 or permission of the instructor.

LS 112 Fundamentals of Genetics

Fundamental aspects of the genetics of bacteria, viruses and higher organisms. Emphasis is placed on both the genetic and biochemical analyses of gene replication, heredity, mutation, recombinetion and gene expression. Comparisons of prokaryotic and eukaryotic genetics and regulation as well as topics in human genetics are included. Laboratory techniques used in the biological and biochemical study of genetic phenomena in prokeryotes, eukaryotes and their viruses. Emphasis placed on modern approaches to genetic research. Lab fee required. Pre requisites: LS 106, 116 and CM 122

LS 115-116 General Biology Laboratory I, II each 1:3:2

 Recitations in relationship to laboratory experiments will include discussions of such topics as: cell structure and function, chemical and physical characteristics of living things, unity and diversity of living things, genetics, development, homeostasis, integration and coordination, adaptation, evolution, ecology and the biological basis of behavior. Lab fee required. LS 115 prerequisite: LS 105. LS 116 prerequisite: LS 106.
LS 120 Microblology

3:3:4
Study of microbial organisms, especially pacteria and viruses. Microbial relationship to disease, infectious and immunologic processes. Mutation, transformation, transduction, induction and bioenergetic processes. Laboratory work: experimental analysis of microbial structure and physiology by biochernical and cylochemical means. Influence of environment on nutrition, enzymes and metabolism of representative microbial species. Lab fee required. Prerequisites: LS 106, 116 and CM 102, or instructor's permission.

LS 121 Clinical Mlerobiology
3:3:4
Lectures and laboratory exercises in microbial structure, culturing, growth, metabolism and control. Special emphasis on bacteria that cause infectious diseases, medical virology, and mycology, and serological testing procedures. Lab tee required. Prerequisites: LS 106, 116 or permission of the instructor.

LS 130 Physiology*

Mechanisms involved in functional processes of ceils and multicellular organisms including integration and control aspects. Membrane function, transport, excitation, conduction, contraction, luminescence. Lab fee required. Prerequisites: LS 106, LS 116, CM 102, CM 112 and PH 103.

LS 132 Cell Physiology 3:3:3
Analyses of chemical and physical mechanisms of cellular function. Molecular constituents of biological systems, enzymes and reaction rates, energetics and regulation of metabolic processes, membrane transport, contractility and irritabil-
ity. Laboratory studies: examination of cellular components in terms of their functional activities (enzymes, oxidativephosphorylation, photosynthesis), kinetics of soluble and membrane-bound enzymes, membrane transport. Lab fee required. Prerequisites: LS 106, LS 116, CM 123 and CM 164.

LS 140 Environmental Biology*
21/2:11/2:3
Study of interrelationships of organisms and their environments. Structure and dynamics within the ecosystem including: biogeochemical cycles, energy, populations and food supply. The effects of pollution and technology as they influence alternatives. Economics, taw and policy decisions in environmental management are considered. Knowledge of FORTRAN or similar language desirable. Lab fee required. Prerequisite: MA 104 or instructor's consent.

LS 151 Cell Biology

3:0:3
Analyses of the cell at all levels of organization to reveal its subcellular, macromolecular and molecular architecture. Topics include: microscopy, cell ultrastructure and function, mitosis, meiosis, the cell cycle, models of membrane structure, chrornesomes and chromatin, microtubule and microfilaments structure and function, cell-cell interactions and cell differentiation. Lab fee required. Prerequisites: LS 106 and LS 116 or permission of the instructor,

LS 155-156 Laboratory Techniques and instrumentatlon in Biology

each 1:9.4 Theory and practical applications of basic analytical laboratory procedures. The course will progress from basic skills such as solution pieparation, pH measurements and volume and mass determinations to more sophisticated procedures such as compositional analyses (protein, DNA, RNA, lipid and carbohydrate determinations), microscopy (light, phase contrast and fluorescence), electrophoresis (polyacrylamide gel and celtulose acetate), ultracentrifugation, chromatography (affinity, ion-exchange and permeation), radioisotopic methods (labeling procedures, radioimmune assays, autoradiography and liquid scintillation counting), tissue cufture techniques, spectroscopy (UV-visible, infra-red and fluorescence). Lab fee required. Prerequisite: LS 106.

LS 160 Histological Techniques
3:3:4
The microscopic study of tissues and organs is presented as background for their visual recognition as well as that of specific cell types. The functional significance of variations and alterations of cell types is stressed. Laboratories are designed to familiarize the student with basic techniques including: fixation, dehydration, embedding, microtomy, slide preparation, staining and histochemistry. Lab fee required. Prerequisite: LS 106.

LS 200 Close Encounters of a Blological Kind* 21/2:1 $1 / 2: 3$ Selected relevant topics may include chronic and acute health effects of physical and chemical environmental agents on biological systems (lead, asbestos, food additives, contaminants), organ transplantation, nutrition, orug addiction, genetic engineering, euthanasia, human experimentation, abortion, human sexuality, battered persons. Laboratory: field trips and experiential learning in project form.

LS 300-304 Thesis in Blology

each 2 eredits Independent work undertaken by students in biology under guidance of faculty members. Original investigation involves careful search of literature, with active participation in conferences and seminars as work progresses. Oral presentation of work before departmental staff and written thesis required. Lab fee required. Prerequisite: departmental adviser's approvai.

LS 305-307 Sentor Project in Life Sciences each 2 credits investigation of problem in biology under supervision of faculty member. Library research, experimental studies, written reports required. Lab fee required. Prerequisite: senior status or adviser's approval.

LS 308 Life Sciences Internship

2 credits
Supervised projects carried out in a hospital, community or industrial setting. Evaluated on basis of written and oral reports presented to faculty and outside project co-sponsors. Faculty conferences and visits required. Open to senior students on approval of departmental adviser. Preplanned experience provides student with significant exposure to relationship between theoretical information and practical applications. Prerequisite: senior status or adviser's approval.

LS310 Seminar in Biology*

1 credit
Selected topics of current interest to be presented by participating students, staff and outside lecturers. Prerequisites: LS 105 and LS 106.

GRADUATE COURSES

LS561 Electron Microscopy \dagger 1:9:4
Course oriented toward development of proficiency in electron microscopic techniques. Discussions and exercises in preparation of glass knives. Fixation, dehydration and embedment of biological specimens. Ultra thin sectioning, staining, use of the transmission electron microscope, and introduction to photographic techniques. Lab fee required. Prerequisites: LS 106 and LS 116 or permission of the instructor.

LS 600 Neurophysiology*
21/2:0:3
An in-depth discussion of basic nerve cell physlology covering such topics as the resting potential, sodium pump, action potential, synaptic mechantsms and local neuronal circuits. Prerequisite: LS 106 or BE 611.

Also listed under BE 692

LS 601 Toplcs in the Neurosciences *

21/2:0:3
A review and in-depth discussion of various topics in the neurosciences. Typical topics will be neurotransmitters, motor control, developmental neurobiology, circadian thythms, pain, neuronal modeling, neural correlates of control nervous system
disorders, etc. Topics will vary from semester to semester and course may be taken for repeated credit. Prerequisites: LS 106, BE 611 or permission of instructor.

Also listed under BE 893

LS 700.701 Cytology I, II*

each $21 / 200: 3$
Introduction to ceflular biology emphasizing relationship of cellular structure to physiology and genetics using modern research methods. Analyses of cytoplasmic and nuclear structures with relationship to cell function. Structure and function of chromosomes. Regulation of chromosome activity and problems of differentiation. Specialized cells discussed. LS 700 prerequisites: LS 103 and CM 122 . LS 701 prerequisite: LS 700.

LS 702 Cytology Laboratory*

0:4:2
Experimental analysis of celfular structure and functions. Preparation of cells for microscopic examination supplemented by demonstrations of special methods and of representative preparations. Light field, dark field, fluorescence, interference, polarizing and electronc microscopy of cytoplasmic and nuclear components and of specialized cells. Lab fee required. Prerequisites: LS 700 and LS 701.

LS 900 Selected Topies in Biology*
21/2:0:3
Presentation of significant topics in biology or related interdisciplinary areas. Topics may vary from year to year.

FACULTY

Shirfey M. Motzkin, Professor of Biology and Director of Life Sciences Program
B.S. Brooklyn College; A.M., Columbia University; Ph.D., New York University Developmental mechanisms, teratofogy and skeletal development, ionizing and nonionizing radiation

Tobianne Simmons, Assistant Professor of Biology B.A., Barnard College; M.S., University of Denver; Ph.D., University of Pennsylvania
Molecular cell biology, biochemistry and genetics, mammalian cell cycle

MANAGEMENT

Among the programs offered by the Division of Management are an undergraduate bachelor of science degree in information management* and two graduate degrees: master of science in management** and master of science in organizational behavior. The graduate degrees are primarily evening programs offered to both full-time and part-time students.

Both graduate programs are open to any student who has earned a bachelor's degree from an accredited school. Sfudents who show potential for advanced study but have undergraduate averages below B may be admitted to nondegree status; satisfactory performance at Polytechnic will permit later application for degree status.

MASTER OF SCIENCE PROGRAM IN MANAGEMENT

The Program-This program is aimed at developing a competence in planning and decision-making and in the selection, allocation and direction of human, financial, physical, technological and organizational resources.

These management skills can be applied in a broad range of professional settings: in the private as well as in the public sector, in labor-intensive as well as in capital-intensive industries, in production-oriented as well as in service-oriented activities, and in lowtechnology as well as in high-technology environments. The program emphasizes a pragmatic approach to management and is intended to train professional managers who can function effectively in complex managerial systems.

Admission-In addition to hoiding an accredited bachelor's degree, each student must take the Graduate Management Admission Test (GMAT) or an acceptable equivalent test. Students who have not taken the test may be admitted to a nondegree status and will be required to take it at its next sitting, preferably during the current semester.

Degree Requirements-The maximum of 45 units at an overall B average performance may be reduced by waivers of not more than 3 core courses, and further reduced by not more than 9 evaluated transfer graduate course credits.

The Curriculum

1. Core Courses. A business administration base, designated as the management core, consists of eight core courses upon which a heterogeneous student body can build a variety of specializations within the
degree programs. Core courses provide intensive introductions to the several disciplines that are basic to professional management. Students who have taken courses in any of these areas elsewhere or who have had substantial equivaient experience, may be excused from taking them; on proof of competence, the adviser may waive the corresponding core courses.

The core courses are:
MG 600 Management Process
MG 601 Organizational Behavior
MG 602 Computers in Management
MG 603 Economic Environment of Management
MG 604 Managerial Accounting
MG 605 Statistical Analysis
MG 606 Managerial Finance
MG 607 Marketing Management
2. Areas of Concentration. The student must choose an area of concentration. This may be one of those listed below or, with the adviser's approval, may consist of a set of courses designed to meet the student's special needs. A minimum of four courses must be selected in the student's area of concentration.

Courses in each of the following avaisable options are shown below:

- Computer Applications
- Construction Management
- Economics and Finance
- Energy Management
- Human Resources Management
- Management and Business Administration
- Management Science
- Public Policy
- Technology Management
- Transportation Management

3. Free Electives. Two graduate courses may be chosen from those offered by any program of Polytechnic. They may include additional courses from the student's or other concentrations but may not include core courses.

4. Business Policy and Strategy with Project (MG 970).

 This required integrating course is recommended to be taken during the student's final semester. It includes a project, normally in the area of the student's specialization.[^11]| Concentration Course Requirements | | Elective: Select one: | |
| :---: | :---: | :---: | :---: |
| | | MG 611 | Career Management |
| Each concentration sequence consists of four | | MG 613 | Industrial Relations |
| courses. If students wish to take more than the | | MG 622 | Personnel Psychology |
| minimum number of required courses, they may count | | MG 623 | Training in Organizations |
| the additional courses as electives. Substitution may be made with the adviser's approval in any concentra- | | MG 631 | Theories of Complex Organizations |
| tion area. | | Management and Business Administration Select four: | |
| Computer Applications | | | |
| Select four: | | MG 612 | Human Resources Management |
| | | MG 624 | Organization Development |
| $\begin{aligned} & \text { CS } 603 \\ & \text { MG } 716 \end{aligned}$ | Information Structures and Algorithms | MG 630 | Operations Management |
| | Commercial Data-Processing System | MG 633 | Research Methods |
| | and Design | MG 664 | Legal Environment of Business |
| MG 736 | Analysis and Design of Management | MG 705 | Managerial Planning Process |
| | Information Systems | MG 762 | Managerial Economics |
| OR 614
 OR 680
 IE 776 | Modeling of Social Systems I | | |
| | System Simulation 1 | Management Science | |
| | Materials Requirement Planning | for MG 636 and MA 551 for MG 702 in the required core | |
| Conetruction Management | | courses | |
| Select four: | | Note that OR 624 has several prerequisites. | |
| MG 631
 MG 810
 MG 820
 MG 825
 MG 826
 MG 827 | Theories of Complex Organizations | Select four: | |
| | Project Planning and ControI | MG 810 | Project Planning and Control |
| | Project Management | OR 614 | Modeling of Social Systems I |
| | Construction Administration | OR 624 | Computer-Augmented Case Studies in |
| | Construction Estimates and Costs | | Management Science |
| | Specifications and Contracts | OR 627 | Operations Research: Deterministic |
| Economics and Finance | | | Models ${ }^{\text {M }}$ M |
| Required: | | $\begin{aligned} & \text { OR } 628 \\ & \text { OR } 680 \end{aligned}$ | Operations Research: Stochastic Models System Simulation I |
| MG 762 | Managerial Economics | Public Policy Select four: | |
| MG 766 | Financial Institutions | | |
| Electives: Select two: | | | |
| MG 640 | Resource Economics | MG 640 | Resource Economics |
| MG 671 | Business and Economic Forecasting | MG 740 MG 746 | Process of Policy Formation |
| MG 672 | Technological Forecasting | MG 746 | Public Sector Management |
| MG 912 | Seminar in Investment Analysis | MG 800 | Policy Analysis and Planning |
| MG 963 | Seminar in Financial Planning and Control | MG 865 | Research Development and Management of Innovation |
| Energy Management | | $\text { ES } 927$ | Energy Policy issues |
| (Refer to Energy Program, page 114.) | | OR 614 | Modeling of Social Systems] |
| Required: | | Technology Management | |
| ES 927 | Energy Policy Issues | Select fo | |
| ES 928 | Energy Resources, Distribution and Conversion Technology | MG 624 | Organization Development |
| | | MG 630 | Operations Management |
| Electives: Select two: | | MG 672 | Technological Forecasting |
| MG 631 | Theories of Complex Organizations | MG 758 | Technology Transfer for Developing |
| MG 640 | Resource Economics | | Countries |
| MG 664 | Legal Environment of Business | MG 820 | Project Management |
| MG 865 | Research, Development and Management of Innovation | MG 865 | Research Development and Management of Innovation |
| MG 866 | Technology Management and Policy | MG 866 | Technology Management and Policy |
| | | OR 614 | Modeling of Social Systems 1 |
| Human Resources | | | |
| Required: | | Transportation Management Select four: | |
| MG 612 | Human Resources Management | | |
| MG 624 | Organization Development | MG 852 | Legal and Regulatory Aspects of |
| MG 633 | Research Methods | | Transportation |

MG 853
Public Finance and Economics in Transportation
MG 855 Analysis of Transportation Markets
MG 857 Transportation Management
MG 858 Transportation Policy and Decision-Making
TR 750 Transportation Economics

MASTER OF SCIENCE PROGRAM IN ORGANIZATIONAL BEHAVIOR

Program-A graduate evening program is offered to students who desire to specialize in the area of organizational behavior, a field concerned with solving human problems in modern organizations. The program, which includes theoretical and practical courses relevant to organizational behavior, integrates the latest contributions from management, psychology and sociology.

Admission-Applicants must hold an accredited bachelor's degree in any field. Those without undergraduate courses in psychology will be required to remove this deficiency. Applicants should submit Graduate Record Examination aptitude scores directly to Polytechnic in advance of the application.

The Curriculum

Required Courses

MG 600 Management Process 3
MG 601 Organizational Behavior 3
MG 605 Statistical Analysis 3
MG 622 Personnel Psychology 3
MG 623 Training in Organizations 3
MG 624 Organization Development 3
MG 631 Theories of Complex Organization 3
MG 633 Research Methods 3
$\begin{aligned} \text { MG } 634 & \text { Applied Research Methods } \\ \text { Total units required } & \frac{3}{27}\end{aligned}$
Research Project-All students are required to complete a research project, submitted as part of the requirements for MG 634.

Elective Courses-Nine units of approved electives may be taken in management or in other relevant disciplines. Courses in the Division of Management include such areas as psychology, human factors in design, computer techniques, statistical analysis, social systems analysis and technological forecasting.

Of special interest to students in organizational behavior are:

MG 611
MG 613 Industrial Relations
MG 614 Collective Bargaining
MG 800 Policy Planning and Analysis
MG 863 Market Research
MG 865 Research, Development and Management of innovation
MG 985 Selected Topics in Organizational Behavior
MG 986 Readings in Organizational Behavior I
MG 987 Readings in Organizational Behavior II

CERTIFICATE PROGRAMS

The Division of Management offers several certificate programs designed for the professional with work experience. A certificate program requires five courses, which are selected in line with the needs of the individual. Applicants for a certificate program must hold a bachelor's degree. On completion of a sequence with a B average or better, the individual is issued a certificate. Students who choose to work toward a master's degree are able to apply all courses taken toward a certificate on admission to the degree program. Additional information may be obtained from the division.

Management Certificate-This program is designed to foster professional and personal growth through an intensive examination and study of the latest advances in management process and the newest quantitive techniques, ranging from management information systems to decision models.

Organizational Behavior Certificate-This program involves an intensive examination and study of the latest knowledge and techniques for dealing with human problems in the organization. The individualized program makes it highly appropriate for specialists as well as generalists who desire to improve and update their knowledge and skills in areas ranging from individual motivation to organizational development.

UNDERGRADUATE COURSES

MG 300 Management Process $30: 3$

 Introductory management course for undergraduates. Primary focus is the management process: planning, organizing, staffing, controlling, directing and decision making. Attention is given to the roles of the various disciplines within managerment as well as to the traditional business functions of marketing, accounting, ifnance, production, engineering, and research and developrnent. Itclass management simulation game.MG 401 Senior Project 3 credts Independent work integrating the student's knowledge under faculty guidance. Student will design a system required to manage information regarding a specific management function. Prerequisite: senior standing in information management.

GRADUATE COURSES

MG 600 Management Process
21/2:0:3
Establishment of a conceptual perspective of major schools of management thought, including scientiftc management, classical administrative theory, human relations, behavioral system theories.

MG601† Organizational Behavior
21/2:0:3
Integration of behavioral science theory, concepts, research and techniques for understanding of human behavior in organizations. Mottvation and job satisfaction, personality and conflict, group dynamics, interpersonal relationships, supervision and leadership, communications, organization structure and process, the impact of technology, career development.

MG 602 \dagger Compurers in Management
$21 / 2: 0: 3$
Computers from management viewpoint. Introduction to Management Information Systems. Organization and characteristics of computers. Construction, updating and other manipulations of mass data files-sequential, indexed and indirect files on magnetic tapes and disks. Case studies of actual report writing from information systems. Laboratory use of IEM 360 . ANSICOBOL language used. (Formerly MG 636)

MG 603 \dagger Economic Environment of Hanagement 21/2:0:3 Central problems of economic society, supply and demand analysis, structure of industrial markets, factors of production, profits and incentives, national income accounting, income determination, business cycles, monetary and banking systems, governmental influences on the economy, international trade and finance. (Formerly MG 650)

MG 804 \dagger Managerial Accounting

21/2:0:3
Aspects of accounting of prackical use to the manager. Stress on understanding of financial statements rather than on bookkeeping procedures. Internal management usage of accounting data: job order, process and standard costing; relation between accounting, economic and financial perspectives.
(Formeriy MG 700)

MG 605 Statistical Analysis

$21 / 2.0 .3$
Fundamental statistical modeis and their use in decisionmaking. Emphasis on alternative techniques, their assumptions and limitations. Normal and binomial distributions, sampling techniques, hypothesis testing, correlation and regression analysis and techniques, analysis of variance and chisquare testing. (Formerly MG 702)

MG 608 Managerlal Finance

$21 / 2,0.3$
Analysis of principles and practices of the finance function and its application in organizations. Survey of use of financial instruments, sources and uses of short- and long-term funds available to business, capital budgeting under certainty and uncertainty, cost of capital and dividend policy, working capital management. Prerequisite: MG 604 or equivalent.
(Formerly MG 751)

MG 607 Marketing Management
 $21 / 2: 0,3$

Foundation course in marketing. The marketing processes and institutions, consumer motivation and bahavior, pricing determination and policies, product planning and development, promotion management, channeis and means of distribution, influences of government, managerial aspects stressed. Prerequisite: MG 603. (Formerly MG 851)

MG611 Career Management

21/2:0:3
An examination of careers from the perspectives of both management and the individual. Specific issues addressed include career stage models, entry "shock," career pathing, mid-career crisis, career change, continuing education and retraining, professional obsolescence, career re-entry, tokenism, job loss and underemployment. Existing career planning/development programs used by organizations will be critically evaluated. Personal career planning exercises will be utilized.

MQ 812 Human Resources Management 21/2:0:3
The personnel function is investigated from the perspective of both the individual manager and the total organization. Topics include: manpower characteristics, recruitment and development, motivation, performance evaluation and rewards; effects of government policy on legislation; the changing labor force.

MG613 Industrial Relatlons

21/2:0:3
Policles and philosophies of management, organized labor and government with regard to solution of labor problems. Evaluation of industrial relations problems, particularly those of collective bargaining, emphasizing interrelationships with social,
economic and legal trends. Prerequisite: NG $\mathbf{6 0 0}$ or approval of instructor.

HG 614 Collective Bargaining* ${ }^{*} 1 / 2.0 .3$

Analysis of nature of the collective bargaining process, its major issues and points of contention. Major trends examined with consideration given to broad economic and social implications. Prerequisite: MG 613.

HG615 Labor Economics
$21 / 200.3$
Analysis of the character and operation of labor markets through economic theory and empirical studies. Supply and demand, wages and employment, "scientific management," job opportunities, governmental micropoltcy, collective bargaining and internal markets. Discrimination, unemployment and inflation, poverty and income distribution. Prerequisite: MG 650 or equivalent.
MG 622 Personnel Psychology*
21/200:3
Examination of theory, research and practice concerning tndfvidual differences relating to organizational bahavior with emphasis on the personnel selection process and measurement of predictors and criteria for valldation and decision-making strategies. Prerequisites: MG 601 and MG 605.

Ma 623 Training In Organlzations

21/2:0:3
The role of training in organizations focusing on department and line managers. Subjects addressed: need analysis, prepar* ation of the employee for the job, management development, tratning program design, evaluation and employee obsoles cence.

MG624 Organization Development
21/2:0:3
Applied theory and research related to process of managing change in organizations. Practical application of group, intergroup and individual change. Planned structural revisions in formal organization. Dynamics of organizational change process. Experiential techniques and seminar approach emphasized. Prerequisite: MG BOt.

MG 630 Operations Hanagement

$21 / 2.0 .3$
Analytical techniques for designing and operating production and service systems. Facility layout and location, assembly line balancing, job sequencing, inventory control, project planning and introductory linear programining.

MG 631 Theories of Complex Organlzations $\quad 21 / 2: 0: 3$ Analysis of theories of largescale organizations focusing on characteristics of bureaucracy, suboptimization, human dynamics and informal systems, influence and control systems, planned change. Examination of both formal and informal organizations through wide variety of research studtes. Prerequisite: MG 601.

MG 632 Business and Its Environment

21/2:0:3
Discussion of variaus environments of business (economic, political, legal, social), together with conflicting values in these environments. Prerequisite: MG 600.

MG 633 Research Methods

21/2:0:3
An introduction to theory and techniques of research methods. Primary objective: to provide an understanding and appreciation of why and how organizational research is carrled out. Survey of research methods. Research projects designed and implemented. Prerequisite: MG 605.

MG 634 Applied Research Methods in

 Organlzational Behavior21/2:0:3 Integration and application of advanced research techniques utilized in study of organizationai behavior and human resource management. Students develop and carry out individual applied research projects. Prerequisites: MG 633 and advanced standing.

MO 640 ${ }^{2}$ Resourice Economics*

21/2:0:3
Theories of exhaustible natural resources with special emphasis on fossil fuels. Theories of extraction logistics and resource exhaustion. Therries of pricing and allocation of exhaustible resources under economic conditions of competition, monopoly and oligopoly. Present day behavior of the world oil market and the domestic markets for natural gas and coal will be discussed, as weil as policy problems. Prerequlsites: SS 251 and MA 103, or OR 665, or permission of the instructor.

MG 664 Legal Environment of Business
 $21 / 2.0: 3$

Legal forces and regulatory patterns affecting business operations. Introduction to the American legal structure and judicial and legislative processes; reconciliation of societal needs and free enterprise. Impact of law on the firm in such areas as environmental protection, energy conservation, fair trade, deceptive advertising, product liability, occupational health and safety, inflation control, antitrust, patents and trademarks.

MO 671 Business and Economic Forecasting 21/200:3

 Forecasting for managerial decision control. Statistical vs. judgmental methods. Smoothing and analyses of trends, seasonal factors, cycles and random variations. Econometric forecasting. Economic indicators and sources of information. Applications to the national economy, industry sales, corporate profits, financial institutions, government expenditures, etc. Prerequisite: OR 608 or equivalent.Aleo listed under OR 671
MGG 672 Technological Forecasting
21/2.0:3 Introduction to problems of technological forecasting. Morphological analysis, extrapolation of trends, heuristic and intuitive forecasts. Consideration of rational directing of technological change. Students prepare forecast on topic of own choice.

Also listed under SS $\mathbf{8 7 2}$

MG 705 Managerial Planning Processes
21/2:0:3
An introduction to strategic management and to formal plarning as a method for translating the firm's goals into procedures or actions. Tactical planning at the operating jevel is stressed. One purpose of the course is to develop an appreciation of foresight and the classical methods for gathering information essentlal to decision-making in largescale organizations. Prerequisites: MG 600 and MG 601 .

MG 716 Commercial Data.Processing

 Syatem Deskn21/2:0:3
Applications of unit record equipment and computers in aystem design, including order writing, billing, sales analysis, accounts receivable, inventory control, payroll and labor accounting, accounts payable, general ledger. Lsboratory use of dataprocessing equipment including the IBM 360. Case studies. Prerequisite: MG 636.
Asso listed under IE 716
NG 727 Case Studies in Management Sclenee* 21/2:0:3 Application of scientific and analytic methods to solving management decision-making problems, drawn from current prsctice and literature. Prerequisites: OR 627 or OR 631 and OR 628 or OR 850.
Also listed under IE 727 and OR 727

MG 738 Anslysis and Design of Managementinformation Syaterna $21,2,0,3$

The role of the information system in the management decision-making process. Detalled development of manage-ment-informetion systems through planning, design and implementatlon, introduction to informatlon thsory, the value of information. The informatlon system and changes in the organization, examples and applications. Prerequisite: MG 602.

MG 740 . Process of Policy Formation
$21 / 20: 3$
Situations faced by practitioners and alternative techniques employed to define issues, formulate policy goals and objectives, bargain over priorlies, define implementation procedures and garner support.

MG 744 Social Forecasting

21/2.0:3
How institutional, economic, sociai and cultural changes affect both private and public sector organizations in divergent-and sometimes dramatic-ways. Evaluation of methods employed to formulate forecasts and of how implicit beliefs and values of forecasters can subtly blas forecasts. Assessment of alternative forecasts. Prerequisite: MG 600.

MG 746 Public Sector Management
21/2:0:3
Management in the public sector is distinguished by the political setting in which it occurs. It goes beyond technical canons of economy and efilciency to involve issues of social equity and political viablity. This course is designed to show how these considerations alter the management decisionmaking process.

MG 757 Technology Transter to
 Developing Countries*

21/2:0.3
Levels of technology: village, intermediate, advanced. Mechaniems of technology transfer to less-developed countries. National and intemational means to stimulate or block transfer. Ecological, social and economic factors in technology selectlon and utilization. Technoiogy and political influence. Case studies of recently industrializing nations. (Not open to etudents who have taken IE 357.)
Also listed under IE 757 and SS 875
MG 758 Human Resource Davelopment in Developing Countries*

21/2003
Spectrum of technology-related manpower needs in less developed countries. Education of engineers, technicians and skilled mechanics. Using foreign personnel, foreign schools, "brain-drain" problems. Economic consequences. Comparisons of educational systems of Westem, Eastern and developing countries. Design of curricula to sult nstional needs. Fole of technical assistance programs. Forecasting of human resource needs. (Not open to students who have taken IE 358.)
Also ilsted under IE 758 and SS $\mathbf{8 7 6}$

MG 780 International Development:

Management and Tectunology
21/2.0:3
The course provides a framework for development issues of particular significance to students in engineering and manage ment. Economics of sclence and technology, appraisal and management of development projects and programs, appropriate technology and mechanisms of technology transfer. Political criteria and the impact of technorogical decisions on socisi and economic change in developing countries.

MG 762 Managerial Economics
21/2:0.3
Application of economic analysis to practical business problems of the firm. Quantitative techniques for decislon-making. Profit measurement, competition, oligopoly and monopoly, multiple product anelysis, demand anslysis and demand forecasting, cost analysis, pricina analysis, capital budgeting. Pro requisite: MG 603.

MG 786 Financlal Inatitutiona $\quad 21 / 2.0: 3$ Financial institutions and thair relative importance in the economy. Capital and money markets, commercial banking system, federal banking system, Investment banks, Insurance companies, savings and losn associations, mutual funds, brokerege companles, international banking.

MG800 Pollcy Analybla and Pianning

$21 / 2: 0: 3$
Systeme analysis of poilcy choices in areas facing federal and regional govemments. Cost-benefit methods and related analythcal techniques. Analysis and planning In an ufban context. Futureorlented studtes. Economic and technological projects. New technologies and their cultural and ecological implicatlons.

MG810 Profect Planning and Control*

21/2:0:3
Nstwork planning techniques for project management and resource ailocatIon. Emphasis on PERT, LOB, CPM and probabHistic generalized networks. Heurlstic models for multiproject schedulting and resource leveling. Other topics Include network development, computer adaptation, progress reports and protect monitoring. Prerequislte: knowledge of computer programming.
Also flated under IE 620 and OR 620

MG 820 Profect Managernemt*
 $211200: 3$

Specific managerlai concepts and techniques related to management of projects in research and development, construction and engineering. Functional and administrative structures, coordination of activities, manpower pianning, feasibility analysis, negotlations and contracte.

MG 825 Construciton Administration

$212,0=3$
Management problerns unique to construction business including licensing, bonding, insurance, shor-term financing, employee reiations. Prerequislte: MG 600 .

Aleo llated under CE 825

MQ 828 Constuction Estimates and Costo
21/2:0:3
Estimates, costs from viewpoint of contractor or construction engineer, details of estimating, emphasis on labor, materlal equipment, overhead costs. Prerequislte: MG 825.
Aleo llated under CE 828

MG 827 Specifications and Contracts

21/200:3
PTinciples of contract law as applied to construction induetry; legal problems in preparing and administering construction contracts. Prerequisite: MG 825 .

Also listed under CE 827

MG840 Financlai Aspects of Publc Polley $\quad 21 / 200: 3$

Politics of fiscal policy and the social welfare principies. Optsmality of publlc pollcy with regard to soclal goods, supported research and development, and different taxation methods. Effect of extemal economies and diseconomtes on the Pareto Optimum conditions; public regulation of soclal resources aliocation. Prerequisite: approval of Instructor.

MG 850 Cost Syatems

$21 / 200: 3$
Methods used in Industry for predicting and recording costs. Design and operation of standard and direct cost-accounting systems. Prerequisite: MG 604.

MG 852 Legal and Fegulatory Aspects of Traneportation

$21 / 2=0: 3$
An in-depth treatment of the origins, causes and effects of reg. ulation on transportation and society in the U.S. Economic and conditional bases for transportation regulation. The legal basis, structure and function of federal, state and local regulating bodies and their interaction with transportation industries. Current controversies concerning the deregulation of sectors of the transportation industry.
Also lleted under TR 755
MG853 Traneportation Finance
21/2:0.3
Materlal is approached from a public finance perspective, including a revtew of those economic theories and analytical techniques that are of particular releyance to transportation. Special attention is given to such areas as (a) the equity vs. effl-
ciency question in transport finance; (b) generai vs. earmarked revenue methods; (c) the valid (and invalid) usee of cost-benefit and cost-effectiveness studies and (d) peak loed (marginal cost) pricing.
Aleo listed under TR 751

MG 855 Analysle of Traneportation Markets

$2120: 0: 3$
Application of the precepts of marketing to public and privete transportation operations. Baslc market structure of major modes is reviewed to demonstrate how gaining and using market data can increase efficiency and proftiability of operations. Attention is given to (a) how factors that affect modai choice are determined and (b) how this Information can be integrated into a "marketing plan" that includes service, pricing and promotional aspects.
Aleo listed under TR 752

MG 858 Behavioral and Sociological Aspects of Traneportation

$21 / 200.3$
Behavioral analysis of transportation decislon-making and travel characterisicics. Sociological factors fnvoived in travel decisions-crime, social isolation, comfort and conventence.
Also listed under SS 195 and TR 758
MG857 Transportation Management
21/2003
Management problems in the prlvate and publle transportation sectors, dlscussion of varlous types and forms of transportation organizatlons-planning organizations, modal operators, consulting firms, etc.-and treatment of organizational problems and issues from the managerial perspectlve. Private vs. public transportation operators and agencies. Public and sembpublic operating authorities: legal basis, fiscal structure, purpose, interaction with private operators. Prerequlsitea: MG 801 and TR 660, or equivalent, or adviser's approval.
Also listed under TR 757

MG 858 Transportation Pollcy and

 Decision-Making21/20.0.3
A high-level treatment of poilcy formulation and decisionmaking in the transportation Industry on several leveis: federal policy, state and tocal pollcy, Indlyidual operating poilcles. Course uses an Intensive case-study approach in a seminar or discussion format. Emphasis is on mass transit operations. Prerequisite: adviser's approval.
Also listed under TR 758

MG 880 Financial Pianning, Intemal Reporting

 and Operational Control21/2:0:3
The techniques of planning and control at various levels within the enterprise with emphasis on system analysis and quantifiable aspects of indlvidual or corporate productivity. Applications in the public and private sectors. Budgeting, monttoring and evaluation of performance, "expense and investment centers," transfer pricing, relationship between control systems and organizational goals. Prerequisites: MG 604 and MG 606 .

MG882 Industrial Marketing

$21 / 200.3$
Problems concerning the marketing of industrial products, particularly those of high technological content. Projecting consumer demand, establishing channels of distribution, sales and customer training, advertising and promotion, technical support of the marketing program and budgeting for these activities of the firm. Prerequisites: MG 600 and MG 607.

MG 883 Market Research

$21 / 2 \cdot 0: 3$
An overvlew of the accepted methodology for Identifying and sizing an existing or emerging merkst for a specific product so as to guide management action In research and development, manufacturing or marketing. Techniques appropriate to collectIng, analyzing and reporting marketplace information to management are explored. Prerequisites: MG 605 and MG 607.

MG 884 Product Pianning
 21/2:0:3

A systematic study of the process followed by successful companies in creating a commercially viable product from technology developed by or available to the firm. The steps involved up to market entry are reviewed sequentially: the inittal search, preliminary evaluation, organizing the new product venture, manufacturing preparation, market testing, etc. Financial aspects of product development. Prerequisites: MG 600 and MG 607.

MG 885 Research, Development and Management of Innovation

21/2:0:3
Introduction to the environment of technologlcal growth in this country with reference to the econorny and the firm. Examinatton of policies and factors that affect innovation in industry. Methods for assessing and forecasting technology, delphi, cross-impacting scenarios, parameter extrapolation, enveloping, etc. Problems in managing research and development by private enterprlse during an era of rapid technological change. Prerequisite: MG 600.

MG 888 Technology Management and Poncy \quad 21⁄2:0:3

Topics and issues in private and public management to which considerations of technology are central: strategic planning in hightechnology corporations, the government's role In directing technology, defense, space, the SST and energy. Managing the large-scale technological enterprise. Science and technology in international relations. Prerequisite: MG 600.

MG 912 Seminar in Investment Analysis" $\mathbf{2 0}^{\mathbf{1} / 2: 0: 3}$

Advanced techniques of capital budgeting and investrnent valuation under certainty and uncerlainty; applications of port fotio theory and mathernatical programming to corporate investment decision. Prerequisites: MG 605 and MG 606.

MG 940 Joint Project or Internship in Transportation Management
each 3 units An independent project or internship in transportation management for students enrolled in the joint M.S. program in Transportation Management.
Also listed under TR 940

MG 963 Seminar in Financial Planning and Control

21/2:0.3
Study of theories of financial management. Application of concepts and procedures to short-and teng-term financial planning and control. Risk analysis, portfolio theory, financial markets, national economy and its fmpact on financial planning and international finance. Prerequisites: MG 605 and MG 606.

MG 870 Business Polky and Stratery
 21/2:0:3

Integration of functional disciplines studied in the master's program to understand how organizations are managed strategically. The "top management" perspective is the focus. Setting organizational goals, establishing policies that assure realization of objectives, devising and implementing strategies to gain competitive advantage or capitalize on a corporate opportunity. Cases, research paper. Prerequisite: advanced standing.

MG 975 Selected Toplcs in Management
 21/2:0103

Current topics in various fields analyzed and discussed. Prerequisites: advanced standing and permission of instructor.

MQ 970-877 Readings in Management

each 3 units
Drected individual study or supervised readings in advanced areas of management. Prerequisite: permission of dean.

MG 985 Selected Toplcs in Organkzational Behavior

21/2:0:3
Discussion and analysis of current topics in organizational behavior. Prerequisites: advanced standing and permission of instructor.

MG 986-987 Readings in Organizational Behavior
oach 3 units Directed individual study or supervised readings in advanced areas of organizational behavior. Prerequisite: permission of dean.

MG 997 Thesis for Degree of Master of Science

 each 3 units Originat investigation in topic chosen by student. Conferences and progress reports required during work, and final written report required at completion; oral examination may be requested by department. Registration and degree credit beyond first six units require separate approval. Prerequisites: degree status and approval of supervising professor, adviser and department dean.
FACULTY

Norbert Hauser, Professor of Industrial Engineering \&
Management Science and Dean of Management
B.M.E., Cooper Union; M.1.E., Eng.Sc.D., New York University
Modeling of social systems, computer simulation, quality control

Anthony J. Wiener, Professor of Management and Director of Policy Studies
A.B., J.D., Harvard University

Long-range planning, public policy studies, political, economic and social environment of business, technology management and assessment

Saymour Kaplan, Associate Professor of Operations Research and Director of Economic Systems Program B.S., Newark College of Engineering; M.S., Ph.D., New York University
Economic modeling, linear programming
Harold G. Kaufman, Associate Professor of Management B.M.E., Cooper Union; M.l.E., Ph.D., New York University Career management, science and engineering manpower, obsolescence and continuing education
A. George Schillinger, Associate Professor of Management and Operations Research
B.E.E., CCNY; M.S., Eng.Sc.D., Columbia University Technology management, policy studies, stochastic systems

David A. Schrler, Assistant Professor of Management and Director of Organizational Behavior Program B.S., Florida State University; M.B.A., D.B.A., George Washington University Organization development and fraining

Willard A. Lewis, Visiting Professor of Management, Professor Emeritus, New York University B.A., New York University; A.M. in Public Law, Columbia University; LLB., Ph.D., New York University Industrial relations, legal environment of business, management and organizational behavior

Dipayan Bhattacharya, Academic Associate B.A., M.A., Jadaypur University (India); M.S. (Transportation), M.S. (Management), M.S. (Organizational Behavior), Polytechnic Institute of New York Statistics, economics, financial institutions

ADJUNCT FACULTY

Patrick Mulvihlilt, Adjunct Professor
B.S., University of Notre Dame; M.S., University of Nebraska at Omaha; M.S., Long Island University

Alex Bemstein, Adjunct Associate Professor B.S., CCNY

Staniey J. Jacoby, Adjunct Associate Professor B.S., Polytechnic Institute of New York; M.S., Columbia University (P.E.)

Staven Kolman, Adjunct Associate Professor B.S., M.B.A., New York University

David Brawerman, Adjunct Assistant Protessor B.B.A., Bernard M. Baruch College

Byron L. David, Adjunct Assistant Professor
B.A., Queens College of City University of New York;
M.S., Polytechnic Institute of New York

Harry Frumerman, Adjunct Assistant Professor
B.S., College of the City of New York; M.A., Columbia University

Gerard P. Gorman, Adjunct Assistant Professor
B.S., Pratt Institute; M.S., New York University

Andrew Sipos, Adjunct Assistant Professor Engineering Diploma, Technical Universlty, Budapest; M.S.C.E, University of Pennsylvania (P.E.)

Clyde Stutts, Adjunct Assistant Professor B.S. Carrol College; M.A., Ph.D., Bowling Green State University

Amadee Bender, Lecturer
B.A., C.W. Post College; M.B.A., New York University

Mauritz F. Blonder, Lecturer
B.B.A., CCNY; M.B.A., Baruch Graduate School of City University of New York; Ph.D., City University of New York

Robert E. Brletel, Lecturer
B.S., Wharton School, University of Pennsylvania; M.B.A., Harvard University

Eugene Brody, Lecturer
B.B.A., M.B.A., Baruch School of The City University of New York

Thomas Conoscenti, Lecturer
B.S., M.A., New York University

Harry Goldfarb, Lecturer
B.S., New York University

Joel H. Joseph, Lecturer
B.A., Yale University; J.D., Hofstra University

Kirtikumar K. Katkar, Lecturer
B.E., University of Bombay; M.S., Polytechnic Institute of New York

Rlchard Kurtz, Lecturer
B.S., M.S., City University of New York

Vincent Maiell, Lecturer
B.E.E., M.E.E., Polytechnic Institute of New York; M.S., C.W. Post College

MATHEMATICS

Mathematics is a branch of learning devoted to the solution of problems by the use of symbolic language and formal logical operations. It serves as a foundation for other scientific disciplines and is an indispensable tool for engineering. Today mathematicians tind employment not only in schools and colleges but in every branch of industry and government as well.

A complete spectrum of mathematics courses is offered at Polytechnic ranging from first-year courses to the doctoral level and covering all branches of abstract and applied mathematics.

In addition, a sequence of elective courses is available in theoretical and applied statistics that enables students to prepare themselves for a career in statistics or in a field utilizing statistical theory and techniques. The graduate curriculum is more specialized. Course work, thesis work and informal departmental activities are all designed to familiarize students with the field of mathematics in general, while they become specialists in the particular area of their choice.

UNDERGRADUATE PROGRAM

The undergraduate program in mathematics provides both a background for advanced study and subsequent research in abstract and applied mathematics and training for those students who expect to terminate their formal education with the bachelor's degree. In addition, a sequence of elective courses in theorefical and applied statistics enables a student to prepare for a career in statistics or in a field utilizing statistical theory and techniques.

For the science and engineering major, mathematics courses provide the theory and methods essential for the comprehension of the mathematical aspects of their respective fietds.

In accordance with these objectives, the Department of Mathematics offers a variety of courses in abstract and applied mathematics and, for the mathematics major, specific programs leading to the degree of bachelor of science.

Students wishing to pursue the bachelor's degree in mathematics may elect to follow either of the two courses of study. Students wishing to focus their studies within mathematics itself may elect course of study I, emphasizing abstract mathematics (see page 168). Students particulariy interested in applying
mathematical knowledge and techniques to other fields may elect course of study il, emphasizing applicable mathematics (see page 169). Both programs provide basic grounding in mathematical knowledge. Details of each program follow.

REQUIREMENTS FOR THE BACHELOR OF SCIENCE DEGREE

MA 111-114 or MA 101-104, 153, 154,	
$217,223,333$	26
CS 111,PH 101-103, CM 101, 102, 111, 112	18
HU 101; and HU 200, SS 104 or IS 140, IS 141	9
Two years (or equivaient) of French, German,	
Russian or Spanish*	12
Maior specialty	21
Minor specialty \ddagger	12
Humanities/Social Sciences electives	9
Free electives§	21
	128

Options - In order to qualify for a New York State Teacher's Certificate in Mathematics, a student may have a maximum of 18 credits in courses in education accepted for transfer credits in place of the corresponding number of free elective credits. ROTC students should note that freshmen and sophomores may substitute zero-credit military science courses for PE 101-104 (physical education); juniors and seniors may substitute three of the following two-credit courses: MS 131, 142, 143, 146, for six credits of technical electives.
*If less than 12 credits are needed, the remaining credits should be taken in the humanities/social science areas.
tMajor specialty. Students must elect a coherent course of study in their major field; two typical selections follow:

Course of Study 1
MA 154, 570
MA 211, 212
Math electivesnine credits IE 327, 328
\ddagger Minor specialty: twelve credits beyond the required course
in any single area of study outside the Department of Mathematics, except for statistics, which may include mathematical statistics courses. The sequence must be welt integrated and consistent, thereby enabling the student to gain some knowledge in an area outside the Department of Mathematics. The faculty adviser of the department of interest should be consulted.
§Students may choose the pass/fail grade option only for free elective courses.

The Minor Specialty - in order to achieve some depth of understanding in a field other than mathematics, the student is asked to choose a 12 -credit sequence from another discipline. This work must be in addition to courses taken under other categories of the program; e.g., required courses in physics do not count toward a minor in physics nor do French courses offered to fulfill the language requirement count toward a minor in French. With the exception of applied statistics and computing courses, all minor course work must be completed outside the department. Education courses will not be accepted toward a minor specialty nor will the first two years of a second foreign tanguage.

The courses of the minor specialty will be chosen in consultation with an adviser. In appropriate cases, the adviser for the minor sequence may be from a department other than mathematics. The following are examples of possible minor concentrations:

Aerospace	AM 111, 112, 311, 312
Applied Statistics	MA 224,232,555,556,557
Biology	LS $105,115,106,116,103$

Aerospace
Biology

AM 111, 112, 311, 312
LSं $105,115,106,116,103$

Chemistry
Computers Industrial Engineering

Operations Research
Management
Physics
Psychology
Econornics
Electrical Engineering Systems
English Literature
French

CM 122, 123, 161, 162
CS 203, 205, 236, 237
IE 300, 306, 327 and one of IE
377, 319, 321
IE 300,327, 328, and one of IE 319, 346, 380
MG 300, SS 199, IE 252 and
either SS 251 or SS 252
PH 210, 321, 313, 314
SS 189, 190, 192, 193, 195, 197
SS 251, 252, 730, 1E 300
EE 101, 102, 103, 104
HU 211, 212, 222, 241, 251, 258,
262, 272, 295
ML $135,235,236,237,238$

Advanced Placement-Advanced placement credit may be given for the first year of calculus. A student receiving a grade of 4 or 5 on the advanced placement examination in calculus, conducted by the College Entrance Examination Board, will be granted eight credits that may be applied toward the 128 -credit requirement for the bachelor's degree in mathematics.

Typical Course of Study I for the Bachelor of Science Degree in Mathematics (Abstract)

Freshman Year

First Semester	
No.	Subject
MA 111	Calculus fa
PH 101	General Physics I
CS 111	Intro. to Computing
HU 101	College Composition
	Language course
PE 101	Physical Education

Sophomore Year

MA 113	Calculus Illa	3	0	3
MA 154	Elem. Abstract Algebra	3	0	3
PH 103	General Physics Ifi	$21 / 2$	$11 / 2$	3
	Language course	3	0	3
CM 101	General Chemistry I	21/2	0	21/2
CM 111	General Chemistry Lab. I	0	$11 / 2$	1/2
PE 103	Physical Education	0	2	0
				15
Junior Year				
MA 211	Analysis 1	3	0	3
MA 217	Complex Variables	3	0	3
SS 104	Contemp. Worid History	3	0	3
	Minor specialty \dagger			3
	Electives*			5
				17

Senior Year Minor specialty \dagger 3
Electives

	HoursiWeek	
Cl.	Lab.	Cr.
4	0	4
3	0	3
3	0	3
3	0	3
3	0	3
0	2	0

Second Semester		Hours/Week		
No.	Subject	Cl.	Lab.	C.
MA 112	Calculus Ha	4	0	4
PH 102	General Physics II	$31 / 2$	$11 / 2$	4
HU 200	Intro. Western Lit.	3	0	3
MA 153	Elem. Linear Algebra	3	0	3
	Language course	3	0	3
PE 102	Physical Education	0	2	0

MA 114	Differential Equations	3	0	3
MA 570	Intro. Geometry	3	0	3
CM 102	General Chemistry II	21/2	0	21/2
CM 112	General Chemistry Lab. IJ	0	$11 / 2$	1/2
	Language course	3	0	3
	Electives*			3
PE 104	Physical Education	0	2	0
				15
MA 212	Analysis 11	3	0	3
	Minor specialty ${ }^{\text {d }}$			3
	Electives*			10
				16

Minor specialty \dagger	3
Electives	$\frac{13}{16}$

Total credits required for graduation: 128
*Electives total 45 credits, of which at least nine must be in the courses with MA labels and at least nine in courses with HU, SS or ML labels. Remaining elective may be freely chosen from the catalog.

GRADUATE PROGRAMS

The Depanment of Mathematics offers graduate-level courses in the fields of foundations and logic, analysis, geometry and topology, algebra and number theory, applied mathematics, probability and statistics. These courses form a major portion of the work for advanced degrees in mathematics. They may also be taken by students in other departments to satisfy minor and elective requirements and by qualified predegree students who desire further study in graduatelevel mathematics.

The department offers the master's degree in the fields of abstract mathematics, industrial and applied mathematics, applied statistics and mathematics teaching at the high school level. The doctor's degree is offered in the fields of abstract mathematics, applied mathe-
matics and applied statistics. Departmental requirements for these degrees are supplemented by certain general requirements for advanced degrees set forth elsewhere in this catalog.

Outstanding students are advised to apply for financial aid in the form of research fellowships, teaching fellowships or partial tuition remission.

REQUIREMENTS FOR THE MASTER'S DEGREE IN MATHEMATICS (ABSTRACT)

A bachelor's degree in mathematics is required for admission to this program. Students with degrees in other fields may be admitted, possibly with undergraduate deficiencres at the discretion of the departmental adviser.

Typical Course of Study II for the Bachelor of Science Degree in Mathematics (Applied)

Freshman Year

First Semester		Hours/Week		
No.	Subject	C.	Lab.	Cr.
MA 101	Calculus I	4	0	4
PH 101	General Physics I	3	0	3
CS 111	Intro. to Computing	3	0	3
HU 101	College Composition	3	0	3
	Language course	3	0	3
PE 101	Physical Education	0	2	0
				16

Second Semester	
No.	Subject
MA 102	Calculus II
PH 102	General Physics 11
HU 200	Intro. Western Lit.
SS 104	Contemp. World History
PE 102	Language course

	Hours/Week	
Cl.	Lab.	Cr.
4	0	4
$3^{1 / 2}$	$1^{1 / 2}$	4
3	0	3
3	0	3
3	0	3
0	2	$\frac{0}{17}$

Sophomore Year

MA 103	Calculus III	3	0	3
PH 103	General Physics II]	$21 / 2$	$11 / 2$	3
MA 223	Intro. Probability	3	0	3
	Language Course	3	0	3
CM 101	General Chemistry]	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab. I	0	$1^{1 / 2}$	$11 / 2$
PE 103	Physical Education	0	2	0
				15

MA 104	Appl. Diff. Equations	3	0	3
MA 224	Intro. to Math. Stat.	3	0	3
MA 153	Elem. of Linear Algebra	3	0	3
	Language course	3	0	3
CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$
CM 112	General Chemistry Lab il	0	$11 / 2$	$1 / 2$
PE 104	Physical Education	0	2	$\frac{0}{15}$

Junior Year

MA 201	Applied Analysis	3	0	3	MA 202	Applied Analysis	3	0	3
MA 217	Complex Variables	3	D	3	MA 358	Intro. Numerical Anal.	3	0	3
[E 327	Operations Res. Models I	3	0	3	IE 328	Operations Res. Models II	3	0	3
	Minor specialty*			3		Minor specialty			3
	Electives			5		Electives			4
				17					16

Senior Year

Minor specialty*	3	
Electives	$\underline{33}$	
		16

Minor specialty	3
Electives	$\underline{13}$
	16

Total credits required for graduation: 128

[^12]
Mathematics

Before beginning graduate study, the student is expected to have completed a year's course in advanced calculus. In case of acceptance without these credits, the student will be asked to take the sequence MA $619-620$ at Polytechnic in addition to the other re quirements listed below for a master's degree.

Thirty-six units are required, 21 units by required courses. If the student elects, six units may be devoted to a thesis.

No.	Required Subjects	Units
MA 621-622	Real and Complex Analysis	6
MA 705-706	Linear and Modern Algebra	6
	Elective courses	18
	Additional electives or thesis	6
		36

The thesis option includes an examination of the thesis material by the student's faculty adviser and certificafion that the work is satisfactory. A student offering only course work must pass a comprehensive oral examination before the degree is awarded. This examination covers the student's program of study and is scheduled toward the end of the semester in which the work will be completed.

REQUIREMENTS FOR THE MASTER'S DEGREE IN INDUSTRIAL AND APPLIED MATHEMATICS

The industrial and appiied mathematics option is offered to students who are interested in certain areas of applied mathematics rather than in pure mathematics. By selecting appropriate sequences of courses, a student may major in mathematical statistics or in mathematical operations research. Department advisers will aid the student in the selection of a program of study. A student who elects this option may continue toward a Ph.D. in mathematics.

A bachelor's degree in some quantitative field, with at least a minor in mathematics, is required for admis. sion to this program. A student who enters without a year's course in advanced caiculus will be asked to take the sequence MA 619-620 at Polytechnic for which no graduate credit will be given. A student who enters without an undergraduate course in linear algebra or complex variables will be asked to take comparable courses (MA 703, 630, respectively) as part of the graduate program; for each such course successfully completed three units may be allowed toward the degree.

No.	Required Subjects	Units
MA 813	Linear Programming	3
MA 821	Numerical and Approximate	
	Analysis	3
MA 851	Probability Theory	$41 / 2$
MA 853	Probabilityl	3

MA $861 \quad$ Principles of Statistical Inference	3
Applied electives-chosen from MA 812, $814,815,817,822,823,852,855,862$	9
Other electives or	$7^{71 / 2}$
Additional electives or thesis	6
	36

Regulations governing the thesis option or final examination for this degree are the same as for the master's degree in mathematics.

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE FIELD OF APPLIED STATISTICS

A bachelor's degree is required in some quantitative field with at least a minor in mathematics, which should include a six-credit course in probability and statistics equivalent to MA 223-224 or MA 561-562. The student is also expected to have a working knowledge of FORTRAN andor PL 1 programming languages. A student may be admitted with undergraduate deficiencies after consuiting with the departmental adviser. Such a student will be required to take the courses necessary to remove the deficiencies.

Regulations governing the thesis option or final examination for this degree are the same as for the master's degree in mathematics.

The thesis or project option includes an examination of the material by the student's faculty adviser and certification that the work is satisfactory. A student offering only course work must pass a comprehensive oral examination before the degree is awarded. This examination covers the student's program of study and is scheduled toward the end of the semester in which the work is completed.

REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE IN THE FIELD OF MATHEMATICS EDUCATION

A bachelor's degree in mathematics is required for admission to this program intended for teachers of mathematics in grades 7-12. Students with degrees in other fields may be admitted, possibly with undergraduate deficiencies, at the discretion of the department adviser. Acceptable mathematics courses are numbered 500 and above; the program should be approved by the departmental adviser.

MA 931-932	Selected Topics in the	
	Teaching of Mathematics	
Elective courses in mathematics	6	
Electives fadditional mathematics,	18	
history of science, psychology, etc.)		
MA 996	Project	6
		6
		36

REQUIREMENTS FOR THE DOCTOR'S DEGREE IN MATHEMATICS

With the requirements for the doctor's degree primarily qualitative rather than quantitative, each student's program must have the approval of the guidance committee.

The number of graduate units of course work usually associated with the doctoral program is 72 . These are normally selected to form well-balanced programs in one major and two minor fields. One minor field may be outside the Department of Mathematics, selected from such fieids as applied mechanics, electrophysics, circuit theory, physics, industrial engineering, industrial management, etc.

Doctoral candidates must pass a qualifying oral examination, which is divided into two parts. Part 1, taken early in the student's career, covers real and complex variables, and algebraic structures. Part 2, covering three advanced elective topics, may be taken only after part 1 has been passed. The final examination, which follows the submission of an acceptable dissertation is also oral.

In addition to 72 units of course material, students must devote at least 24 units to dissertation reporting original research under the direction of a faculty adviser.

The student must satisfy the doctoral language requirements in one language selected from French, German or Russian.

Additional details are contained in a brochure, which may be obtained from the departmental office.

REQUIREMENTS FOR THE DOCTOR'S DEGREE IN APPLIED STATISTICS

Within the Department of Mathematics, Polytechnic offers graduate study in the field of applied statistics leading to the Ph.D. degree. A full range of courses is
offered in the areas of applied and mathematical statistics, supported by a range of elective courses in probability and all areas of abstract and applied mathematics. Students may also take elective courses from other departments, selected under the supervision of their graduate adviser.

A bachelor's degree with at least a minor in mathematics, which should include a one-year course in probability and statistics and a one-year course in advanced calculus is required. A working knowledge in FORTRAN and/or PL 1 programming languages is also desirable.

No.	Required Subjects	Units
MA 630	Elements of Complex Variables	3
MA 703	Linear Algebra	3
MA 621	Real Analysis	3
MA 853, 855	Probability, Stochastic Processes	6
MA 861.862	Principles of Statistical Inference	6
MA 863.864	Multivariate Analysis	6
MA 865-866	Regression and Analysis of Variance	6
	Subtotal	33
At least 3 of		
MA 551	Data Analysis	9-15
MA 555	Design of Experiments	
MA 557	Sampling	
MA 867	Nonparametric Methods in Statistics	
MA 881	Statistical Analysis of Time Series	
Electives, app	roved by departmental adviser	24-30
	Subtotal	72
Dissertation	T999 (3 units each)	24
	Total	96

The student must satisfy the doctoral language requirements in one language selected from French, German or Russian.

REQUIREMENTS FOR CERTIFICATE PROGRAMS

The department offers certificate programs in the areas of applied statistics, mathematical statistics, computer mathematics and mathematical programming. Requirements for the certificate program is 15 units.

Applied Statistics

MA 223 Introduction to Probability
MA 224 Introduction to Mathernatical Statistics
choice of three
MA 554 Applied Decision Theory
MA 555 Design of Experiments
MA 556 Correlation and Multivariate Models
MA 557 Sampling

Nathematical Statistics

MA 861 Statistical Inference i
MA 862 Statistical Inference II

Mathematics

choice of three	
MA 863	Multivariate Analysis]
MA 864	Multivariate Analysis II
MA 865	Regression and Analysis of Variance [
MA 866	Regression and Analysis of Variance 11
MA 881	Statistical Analysis of Time Series]
MA 882	Statistical Analysis of Time Series It
MA 867	Nonparametric Methods in Statistics
Computer Mathematics	
MA 821	Numerical and Approximate Analysis!
MA 822	Numerical and Approximate Analysis II
choice of three	
MA 823	Special Topics in Numerical Analysis
MA 825	Numerical Linear Algebra
MA 837	Applied Marrix Theory
MA ${ }^{\text {B }} 3$	Linear Aigebra and Differential Equations
Mathomatical Programming	
MA 812	Theory of Games
MA 813	Linear Programming
choice of three	
MA 814	Integer Programming
MA 817	Graph Theory
MA 818	Nonlinear Programming
MA 844	Optimal Control Theory

REVIEW COURSES

MA001 Pre-Collegiate Algebra 20:nc For student who has not taken in preparatory school or who needs review work in algebra. Exponents and radicats, factoring and fractions, logarithms, systems of equations, ratio, proportion, variation, quadratic equations, inequalities.

MA 005 PreCollegiate Trigonometry
 2:0.nc

For student who has not taken subject in preparatory school or who needs review work in trigonometry. Definitions of trigonometric functions, reduction formulas, radian measure and curve plotting, addition and subtraction formulas, inverse trigonometric functions, solutions of trigonometric equations, polar coordinates.

MA 011 Review of Calculus
20:nc
For graduate students who are insufficiently prepared for subsequent required courses in differential equations. Fundamental concepts and applications of calculus and infinite series. Course is remedial, and admission requires recommendation of departmental adviser.

UNDERGRADUATE COURSES

MA 091-092 Principles of Mathematics $1,11 \quad$ each 4:0:4
Logic, sets, mathematical induction, geometry, trigonometry, functions, limits, differentiation, integration, and some applications, probability. First course in mathematics for students in Departments of Hurnanities and Social Sciences.

MA 101 Calculus 1
4:0:4
Standard first course in calculus for beginning students. Function concept, trigonometric functions, limits of aigebraic and trigonometric functions, differentiation, maximization, applications to geometry and physics. The integral, elementary techniques of integration of algebraic and trigonometric functions.

MA 102 Caiculus II 4:0:4
Application of integration, logarithmic and exponential functions, advanced techniques of integration, hyperbolic tunctions, inverse trigonometric and hyperbolic functions, areas in polar coordinates, conic sections, indeterminate forms, infinite series and power series. Prerequisite: MA 101 or MA 111.

MA 103 Calculus III
3.0:3

Solid geometry and fectors. Partial derivatives. Multiple integrals. Parametric equations. Prerequisite: MA 102 or MA 112.

MA 104 Applied Differential Equations
3:0:3
Ordinary differential equations: separable variables, linear equations with constant coefficients, series solutions. Use of Laplace transforms. Systems of differential equations. Prerequisite: MA 102 or MA 112.

MA1s1 Caiculus la
4:0:4
First course in calculus with emphasis on definitions and proofs. Standard operations of calculus of one variable, differentiation formulas, applications. The integral, methods of integration, applications. Polar coordinates, parametric equations, plane curves. Elementary transcendental functions. Prerequisite: department's permission.

MA 112 Calculus lia
4:0.4
Sets and sequences of real numbers, properties of real number system. Theory of limits and continuity. Definition of Riemann integral and Riemann-Stieltjes integral. Vectors in plane and space. Determinants. introduction of matrices. Prerequisite: MA 111, or MA 101 and department's permission.

MA113 Calculus illa

3:0:3
Standard operations of caiculus of several variables. Partial derivatives. Multiple integrals. Infinite series, power series, uniform convergence. Interchange of order of limits, derivatives, integrals, series. Introduction to differential equations. Prerequisite: MA 112 or MA 102 and department's permission.

MA 114 Differential Equations
3.03

Existence and uniqueness theorems. Systems of ordinary differential equations. Series solutions. Nonlinear differential equations. Introduction to partial differential equations. Prerequisite: MA 113.

MA 143 Introduction to Number Theory
3:0:3
Properties of integers and prime numbers, congruences, theorems of Fermat, Euler, Wilson, quadratic residues, diophantine equations. Prerequisite: MA 102.

MA 153 \dagger Elements of Linear Algebra
3:0:3
Linear transformations, matrices and determinants, characleristic roots, diagonalization, introduction to vector spaces. Prerequisite: MA 102 or MA 112.

MA 154 Elements of Abstract Algebra
3:0:3
Basic properties of groups, rings, fieids, ideats, Euchidean rings, modules, field extension, Galois theory, finite fields, finite division rings. MA 154 prerequisite: MA 153.

MA 161 Introduction to Point Set Topology
3:0:3
Definition of topology and topological space, mappings, compact sets, separation axioms, metric space and completion of a metric space. Prerequisite: MA 211 or MA 202.

MA177 \dagger Transformation Geometry
3:0:3
Reflections, congruence, groups, homogeneaus spaces. Isometrics, group of similarities, circular transformations. Hyperbolic and elliptic geometry. Prerequisite: MA 211 or MA 202.

MA 178 \dagger Projective Spaces
3:0:3
incidence structure, configuration theorems, partial projective
planes, finite projective planes, conics. Prerequisite: MA 211 or MA 202.

MA 194 \dagger History of Mathematics
 3:0:3

Historical study of fundamental ideas of mathematics from antiquity to present day. Designed to develop deeper understanding of and cultural appreciation for significance of mathematics in civilization. Prerequisite: MA 102.

MA 201-202 Applted Analysis
each 3:0:3
Study of basic topics in analysis with emphasis on methods. Sequences, series, functions, uniform convergence, continuity, partial differentiation, extreme value problems with constraints, Rternann integrals, tine integrals, improper integrais, integrals with parameters, transformations, Riemann-Stieltjes integral, uniform, and absolute convergence of integrals. Beta, Gamma functions. Prerequisites: MA 103 and MA 104.

MA211-212 Analysis I, II

each 3:0:3
Careful and rigorous discussion of real numbers. Limits, sequences, series. Functions of one real variable: continuity, derivatives, integral. Continuation of MA 211. Series and sequences of functions of one varfable. Functions of several variables, transformation. Theorerns of Gauss, Green, Stnkes. MA 211 prerequisite: MA 114. MA 212 prerequisite: MA 211.

MA217 Complex Variables

3:0:3
Functions of complex variables, derivatives, Cauchy-Riemann equations, integrals, Cauchy integral theory, power series, residue theory, conformal mapping, Schwarz-Christoffel transformation. Prerequisites: MA 103 and MA 104.

MA223 \dagger Introduction to Probability

3:0:3
Standard first course in probability; recommended for those planning further work in probability or statistics. Probability of events, random variables and expectations, discrete and continuous distributions, joint and conditional distribution, moment generating functions, central limit theorem. Prerequisite: MA 103.

MA224 \dagger Introduction to Mathematical Statistics $\quad 300: 3$ Standard first course in mathematical statistics, recommended for those planning to take advanced work in statistics. Sampling distributions, tests of hypotheses, significance tests, point and interval estimation, regression and correlation. Prerequisite: MA 223 or MA 561.

MA 231† Stallatical Methods I

2:3:3
Descriptive statistics computed from data; means, variances, histograms. Applications of binomial, normal, t and chi square distributions. Statistical tests. Confidence intervals. Simple regression and correlation. Prerequisite: MA 102.

MA 232 \dagger Statistical Methode II

2:3:3
Analysis of variance with simple experimental designs. Sampling procedures, including sequential analysis. Nonparametric statistical methods. Statistical decisions. Prerequisite: MA 231 or MA 562 or MA 224.

MA $238 \uparrow$ Applled Probablilty

Second course in probability with emphasis on applications. Topics chosen from reliability theory, sampling theory, Monte Carlo methods, combinatorial analysis. Prerequisite: MA 223.

Additional offerings in the area of statistica may be found under 500-number courses

MA 260t Vector Analysls and Partial Differential Equations

40:0:4
Vector algebra and vector catculus. Surface, line, volume integrals. Theorems of Gauss, Green, Stokes. Curvilinear coordinates. Fourier series. Legendre polynomials and Bessel func-
tions. Dirichlet and Neumann problems. Heat flow, wave motion, vibration problerns. Prerequisites: MA 103 and MA 104.

MA 333 Partial Difterential Equations
3:0.3
Fourier series and integral. Heat, wave and LaPlace differential equations. Dirichlet and Neuman problems. Legendre polynomiais and Bessel functions, some numerical techniques. Prerequisites: MA 103 and MA 104.

MA 341 Discrete Computational Structures 3:0:3 Discrete mathernatics and its implications in computing. Graphs, set theory, relations and functions, networks, finite groups, combinatorics, mathematical logic. Prerequisite: junior status or permission of instructor.

MA 342 Discrete Computational Structures If 3:0:3 Continuation of MA 341 with applications of combinatorial mathematics, algorithms involving discrete optimization, queueing theory in computer science. Prerequisite: MA 341.

MA 358 Introductory Numertcal Analysis
3:0:3
Numerical solution of equations, difference tables, finite differences, operator methods, numerical differentiation and integration, numerical sotution of ordinary differential equations, systems of linear equations, solution by direct and iterative methods. Prerequisites: MA 104, MA 153 and some experience in programming for digital computers.

MA 385-386 Reading Seminar in Mathematics I, II
Reading, study and investigation of selected topics in mathematics. Problern discussion and presentation by participating students. Prerequisite: department adviser's permission.

GRADUATE COURSES

MA 531-532 \dagger Applied Mathematics in Engineering

 and Science 1, IIeach $21 / 2: 0: 3$ Vector algebra and vector analysis. Determinants and matrics. Jordan normal forms. Eigenvalues of symmetric matrices by iteration. Applications to systems of differential equations. Matrix exponential Sturm-Liouville problems. Legendre polynomials and Bessel functions. Applications. Not accepted for graduate credit in Department of Mathematics. MA 531 prerequisites: MA 103 and MA 104. MA 532 prerequisite: MA 531.

MA 535 Vector and Tensor Analysis

$21 / 200: 3$
Vector analysis in three dimensional space, integral theorems, applications to potential theory. Tensor algebra, tensor caicuIus, fundamentals of Reimannian geometry, divergence theorem. Applications of tensor calculus to the calculus of varfations and field theories of relativity. Prerequisite: MA 103 and 153 or equivalent.

MA 551 \dagger Applied Statistics I(Data Analysis) 21/2:0:3 Treatment of statistical methods and application to analysis of data, to fitting of functions to data. Estimation of population parameters, t -tests, chi-square tests, rank tests, analysis of variance, tinear and non-linear regression, spectral analysis. Pre requisite: calculus.

MA 552 \dagger Applied Statictics If (Experimental Design) 21/2:0:3 Statistical principles useful in designing comparative and descriptive experiments and their application. Randomized block designs, latin square, factoriai, saturated, response surface designs, sequential experimentation. Prerequisite: MA 551 or MA 232.

MA554 \dagger Applied Decision Theory
21/2:0:3
Principles of statistical decision procedures; introduction to utility theory, minimax, Bayes strategies. Applications to problems in engineering, science, managernent. Prerequisite: MA 224 or MA 562.

MA 555 \dagger Design of Experiments
21/2:0:3
Principles of modern statistical experimentation and practice in use of basic designs for scientific and industriai experiments. Single-factor experiments, randomized blocks, Latin squares, factorial and fractional factorial experiments, surface fitting designs. Prerequisite: MA 224 or MA 232.

MA $556 \dagger$ Correlation and Multivariate Models
 21/2:0:3

Treatment of exporimental data involving several types of measurements por individual. Regression and correlation. Simple multiple and partial correlations. Problerns of discrimination and classitication, elements of factor analysis. Applications to analysis and interpretation of data. Prerequisite: MA 224 or MA 232.

MA 557 \dagger Sampling

21/2:0:3
Statistical theory and methods applicable to survey sampling. Simple random sampling, stratified, cluster double and systematic sampling, ration and regression estimates, purposive sampling. Control of errors, costs and nonsampling aspects of survey investigations. Prerequisite: MA 224 or MA 232.

MA 581t Elements of Probability
21/20:0:3
Probability of events. Random variables and expectations, discrete and continuous distributions, important standard distributions and applications, moment generating functions, central limit theorem. Not acceptable for graduate credit in Department of Mathematics. (Not open to students who have taken MA 223 or equivalent.) Prerequisite: MA 103.

MA 562 \dagger Statistics $21 / 2.0: 3$
Estimation, confidence firnits, tests of hypothesis, regression analysis. Applications to engineering problems. Not acceptable for graduate credit in Department of Mathematics. Prerequisite: MA 561.
Also listod under OR 608
MA 565 \dagger Intermediate Differential Equations $\quad 2^{1 / 2}: 0-3$ Solution of ordinary differential equations. Applications to geometry and physics. Oscillation theory. Introduction to geometric theory, elementary critical points. Prerequisites: MA 103 and MA 104

MA $570 \dagger$ Introductory Geometry

21/2:0:3
First course in modern geometry. Surface areas, volumes, transformation groups, convexity, Minkowski spaces, elementry metric spaces. Prerequisite: MA 113 or MA 103, and MA 153.

MA 575 Introduction to Differential Geometry $\quad 21 / 20: 0,3$ Differential geometry in the plane, theory of dented gears. Introduction to transformation groups. Space curves and rules surfaces. Tensors and exterior forms, manifolds and tensor fields. Theory of surfaces. Introduction to Riemannian geometry. Prerequisites: MA 103 and 153 or equivalent.

LOGIC AND FOUNDATIONS

MA 603 Symbolic Logic
$21 / 200: 3$
Formal, manipulative, symbolic logic. Russell's theory of types, existence and universal quantification, material implication and equivalence, consistency. Prerequisites: MA 103 and MA 104.

MA 605-606 Toples in Analysis for Teachers I, il

each $33 / 400.41 / 2$
Elements of abstract spaces and structures with applications to specific modern problems in ordinary and partial differential equations, probability and statistics, linear programming. Designed to provide high school teachers with modern concepts to enrich their classrooms. Credit for these courses granted only to those students in high school teachers' pro-
gram. MA 605 prerequisite: calculus. MA 606 prerequisite: MA 605.

MA 607-608 Fundamentals of Mathematics I, II each 21/2.0.3 Designed to modernize overall viewpoint of secondary school teachers of mathematics. Implication for secondary schoot curriculum derived from study of sets, topology, transformations, types of geometries. Discussions of symbolic logic and deduction, algebraic structures, analysis, probability and statistical inference, selected related topics. Prerequisite: calculus.

ANALYSIS

MA 619-820 Advanced Calculus I, II
each $2 \frac{1}{2} .0-3$
Functions, sequences, bounds, limits. Properties of continuous functions. Mean value theorems, Taylor's serles. Partial differentiation. Extreme value probiems with constraints. Implicit functions. Transformations. Line integrals, Green's theorem. Transformation of double integrals. Uniform continuity. Theory of Riemann integral. infinite series and power series. Uniform convergence. Improper integrals. MA 619 prerequisites: MA 103 and MA 104. MA 620 prerequisite: MA 619.

MA 621 Real and Complex Analysis i $\quad 21 / 20: 3$ Cardinal numbers, topology of n-dimensional Euclidean space, introduction to measure theory, Lebesgue integration theory, measurable functions, functions of bounded variation, absolutely continuous functions, differentiation and convergency theorems, Radon-Nikodym theorems, Lusin's theorem, product measure, Fubini theorems. Prerequisite: MA 620 or equivalent.

MA 622 Real and Complex Analysis il
21/2:0:3
Rigorous development of theory of functions of complex variable. Complex number system, differentiation and integration, anaiytic and meromorphic functions, residue theory, introduction to Riemann surfaces, conformal mappings, Blaschke products, Picard theorems. Prerequisite: MA 621.

MA 625-626 Measure and Integration Theory 1, II each $2^{1 / 2}: 0: 3$ General measure spaces, abstract integral and its properties, signed and complex measures, product measures, measurable transformations, measures in locaily compact topological spaces, measure and topology in groups, Haar measure, measures in functional spaces. MA 625 prerequisite: MA 624 or instructor's permission. MA 626 prerequisite: MA 625.

MA630 Elements of Complex Variables

21/2:0:3
Emphasis on analytic functions of single complex variable. Complex numbers, differentiation and integration, line integrals, Cauchy integral theory, power series, residues, brief introduction to multiplevalued functions. Acceptable for graduate credit only in departments other than mathematics. Pserequisites: MA 103 and MA 104.

MA 637-838 Topics in Complex Varlables
each $2^{1 / 2}: 0,3$
Content of course varies. In spring of year prior to one in which course is offered, detailed description posted and mailed to all graduate mathematics students. Prerequisite: MA 622.

MA 645 Theory of Ordinary Differentlal Equations 21/2:0:3 Ordinary differential equations. Existence and uniqueness theorems, linear systems, isolated singularities, self-adioint eigenvalue probiems, geometric theory of differential equations in the plane. Prerequisite: MA 620 or equivatent.

MA846 Theory of Parlial Differental Equations $\quad 21 / 2=0,3$ Partial differential equations. Cauchy-Kowalewskitheorem, first-order differential equations, system of differential equations in two variables, characteristics and classification, hyperbolic, parabolic and elliptic systems, weliposedness. Prerequisite: MA 645.

MA 649-650 Topics in Ordinary and Partial Differential Equations

each $21 / 2: 0: 3$
Content of course varies. in spring of year prior to one in which course is offered, detailed description posted and mailed to all graduate mathematics students. Prerequisite: MA 620 or equivalent.

MA 658 Calculus of Variations

21/2:0:3
Extension of elementary theory of maxima and minima. Euler equations, conditions of Weierstrass, Legendre, and Jacobi, Mayer fields, Hamilton-Jacobi equations, transversality, conjugate and focal points. Applications to geodesics, minimal surfaces, isoperimetric problems, Hamilton's principle. Fermat's principle, brachistochrones. Prerequisite: MA 202 or MA 212 or MA 620.

MA 681-662 Special Functions of Mathematical

 Physics I, IIeach $21 / 20: 0: 3$ Gamma functions, orthogonal polynomials, hypergeometric functions, special cases such as Legendre functions, confluent hypergeometric functions-in particular, Whittaker and Bessel functions. Hill's equations with emphasis on Mathieu equation. Stresson development as functions of complex variable and as asymptotic series. MA 661 prerequisite: MA 630 or MA 622. MA 662 prerequisite: MA 661 .

MA 681-682 Functional Analysis i, II

each $21 / 20: 0: 3$
Hilbert spaces, Banach spaces, Banach algebras, linear operators spectral theory, perturbation theory, completely continuous operators, Gelfand theory. Application of these in classical analysis. Prerequisite: MA 703 or equivalent.

MA 683-684 Speclel Topics in Functional

 Analyslseach 21/2:0:3
Content of course varies. In spring of year prior to one in which course is offered, detailed description posted and mailed to all graduate mathematics students. MA 683 prerequisite: MA 682 MA 684 prerequisite: MA 683.

ALGEBRA AND NUMBER THEORY

MA 703 Unear Algebra
 21/2:0:3

Systems of tinear equations and matrices, determinants, vector spaces, linear transformations, eigenvalues, eigenvectors, diagonalization, symmetric matrices, introduction to numerical methods of linear algebra. Prerequisites: MA 103 and MA 104, or equivalent.

MA 705 Linear and Modem Algabra I

21/2:0:3
Basic algebraic structures, groups, rings, fields, integral domains, ideals, modules. Extensions of fields, Galois theory. Prerequisite: MA 620 or equivalent.

MA 706 Linear and Modem Algebra Il

Algebra of linear transformations, matrix theory, Jordan cannonical form, Hermitian operators, unitary operators, normal operators, spectral theorem. Dual spaces, inner product spaces. Prerequisite: MA 705

MA 715-718 Advanced Toplcs In Algebra

each 2 $1 / 2: 0: 3$ Content of course varies. In spring of year prior to one in which course is offered, detailed description posted and mailed to all greduate mathematics students. MA 715 prerequisites: MA 705 and MA 706. MA 716 prerequisite: MA 715.

GEOMETRY AND TOPOLOGY

MA 754 Topological Methode in Analyais
21/2:0:3
Aspects of topological methods and applications to existence theorems in analysls. Use of fixed-point theorem and topologi-
cal degree in study of properties of solutions of ordinary and partial differential equations. No previous courses in topology required. Prerequisite: MA 212 or MA 620.

MA755-756 Topology I, II

each 21/20:0:3
Topological spaces, compactness, connectedness, continua, extension theorems, metrization theorems. Simplexes, simplicial topology and applications, fixed-point theorems, graphs and networks, homology and co-homology theory, introduction to Morse theory. MA 755 prerequisite: MA 620 or equivalent. MA 756 prerequisite: MA 705.

MA 70 Metric Differential Geometry 21/2:0:3 Elements of metric geometry of curves and surfaces in Euclidean space. Plane and space curves, first and second differential forms of a surface, lines of curvature, asymptotic lines, geodesics, theorems of Meusinier, Euler, Gauss, Codazzi, special classes of surfaces, mapping problems. Prerequisites: MA 103 and MA 104.

MA 775-776 Manlfolds-Geometry and Differential
 Topology I, II each $21 / 20: 3$

Elementary theory of manifolds. Tangent space, mappings, submanifolds, fields, fiber bundies, lie groups, homogeneous spaces. Elements of theory of connections, Riemannian geometry. imbedded manifolds. Calculus of variations. Harmonic forms, complex manifolds, Morse's theory. MA 775 prerequisite: MA 770. MA 776 prerequisite: MA 775.

MA 785 Selacted Topics in Geometry
21/2:0:3
Integral geometry, combinatorial geometry, transformation groups, Lie groups and algebras, algebraic geometry, convex polytopes and geometry of numbers. Prerequisites: MA 751 and instructor's approval.

MA 786 Selected Topics in Topology
21/20:3
Complex spaces (several complex variables), calculus of variations in the large (Morse theory), global differential geometry. Differential topology, homotopy theory. Prerequisites: MA 751 and instructor's approval.

APPLIED MATHEMATICS

MA 801-802 Special Topics in Applied

 Mathematics I, IIeach $21 / 2: 0: 3$
Asymptotic expansions of definite integrals and of solutions to differential equations, perturbation theory, variational methods, nonlinear vibrations, distributions, spectral representation of linear operators, relaxation methods, boundary-value problems. MA 801 prerequisites: linear algebra, complex varlables. MA 602 prerequisite: MA 601.

MAB04 Calculus of Finite Differences

21/2.0:3
Discussion of various difference equations, generating functions, analogies with differential equations. Introduction to stability theory, mixed differential difference equations, applications to mathematical physics, adaptability of digital computers to solution of difference equations. Prerequisites: MA 103 and MÁ 104.

MA 805-806 Tensor Analysis I, II
each $21 / 2,0: 3$ Study of tensors beginning with their algebra in affine coordinates in ordinary Euclidean three-dimensional space. General concept of geometric objects in n-dimensional space, including co- and contra-variant tensors, densities, capacities and their classification. Calculus of tensor fields, metrics, differentlal operators, covariant derivative, curvature tensor, differential geometry of Riemannian spaces, paraliel displacement, Iinear connections. Applications to mechanics of continuous media and theory of relativity. Prerequisites: MA 535 and MA 703.

MA 812-815, 817, 818 listed below under Probability, Statistics, Operations Research.

MA 819-820 Theory of Approximation

each 21/2:0:3
Theory and application of methods of fitting mathematical curves or surfaces to experimental data in two or three variables, including method of least squares, method of averages, rectification of data, determination of periodicities. Orthogonal polynomials in least squares fitting. Chebyshev approximation. Statistical aspects of principle of least squares. Elernents of nonography. MA819 prerequisites: MA 103 and MA 104. MA 820 prerequisite: MA 819.

MA 821-822 Numerical and Approximate Analysis l, 11

each 21/2:0:3
Approximation of functions by polynomials. Interpolation. Numerical integration. Linear algebraic equations and eigenvalue-eigenvector problems. Numerical solution of equations. Numerical solution of ordinary and partial differential equations. Primarily intended for students in applied fields. MA 821 prerequisite: MA 153. MA 822 prerequisite: MA 821, MA 358 or equivalent.

MA 823 Special Topics in Numerical Analysis* 21/2:0:3
Numerical solution of ordinary and linear partial differential equations. Stability, consistency, error estimates, convergence of difterence schemes. Prerequisites: MA 821 and MA 153.

MA 825 Numercal Linear Algebra

21/2.0:3
Review of direct and iterative solutions of linear equations. Perturbation theory. Error analysis. LR and OR algorithms. Review of recent algorithms and publications. Prerequisite: MA 153.

MA 833 Partiel Differential Equations of Mathematical Physics

$33 / 40 \cdot 41 / 2$
First- and second-order partial differential equations and systems of equations. Initial and boundary value problems. Fundamental solutions and Green's functions. Theory of characteristics. Eigenvalue problems. Rayleigh-Ritz and Ritz-Galerkin methods. Approximate and asymptotic methods. Nonlinear equations and applications. Prerequisite: MA 202, or MA 212 or MA 620 or equivalent.

MA835 Potential Theory $21 / 200: 3$
Theory of potential and application to problems. Newtonian potential, expansion of potential in series of spherical harmonics, properties of harmonic functions, relation of potential to theory of functions, inversions, Green's function, Poisson's integral. PTerequisite: MA 212 or MA 620 .

MA 836 Applied Complex Variables

21/2:0:3
Brief review of imporlant characteristics of analytic functions. Use of conjugate functions in solution of two-dimensional potential problems. Study of conformal mapping with emphasis on Schwarz-Christoffel transformation and its applications. Prerequisite: MA 630 or MA 632.

MA 837 Applied Matrix Theory

21/2:0:3
In-depth introduction to theory and application of linear operators and matrices in finite dimensional vector space. Invariant subspaces, elementary divisors, canonic forms, minimax theorems for eigenvalues of hermitian pencils. Illustrations drawn from continuum mechanics, electromagnetic theory, ordinary differential equations. Prerequisites: MA 103 and MA 104.

Also listed under EL 613
MA B36 Linear Algebra and Differential Equations 21/2:0:3 Basic theory of linear algebra and its application to systems of ordinary differential equations, method of adjoints, series solutions, equations with periodic coeflicients, stability theory, applications to nonlinear systems. PTerequisites: MA 103 and MA 104.

MA 839 Introduction to Functionsl Ansalysis \quad 21/2:0):3 Study of operators on metric, Banach and Hilbert spaces. Applications of functional analysis concepts to integral and differential operators of mathematical physics, spectral theory, special topics in nonlinear functional analysis. Prerequisite: MA 838 or equivalent.

MA841-842 Integral Equations I, It
each 21/2.0:3
Fredholm theory, Hilbert-Schmidt theorem, singular integras equations, Wiener-Hopf equation. Applications of integral equations to potential theory, elasticity, other physical problems. MA 841 prerequisites: advanced calculus and complex variables. MA 842 prerequisite: MA 841.

MA844 Optimal Control Theory $21 / 20: 3$
Optimal control problem for deterministic systems with various constraints. Solution for both continuous and discrete-time systems using maximum principle and dynamic programming. Hamilton-Jacobi theory as applied to synthesis problem. Optimization problems with state variable constraints. Prerequisites: MA 838 or EL 653 or EL 673.
Also listed under EL 823
MA 846 Fourfer and LaPlace Transtorms
21/2:0:3
Application of transform methods of partial differential equations of mathematical physics. Includes introduction to Wiener-Hopf technique. Prerequisites: MA 631 or MA 620 or MA 630.

MA 851-855, 860-874 Isted below under Probability, Statistics, Operations Repearch

PROBABILITY, STATISTICS, OPERATIONS RESEARCH

MA 812 Theory of Games
$2 y_{2}=0.3$
Introduction to mathematical analysis of conflict situations. Network and extensive form games, matrix games, solution algorithms, consideration of n-person and non-zero sum games. Prerequisites: MA 153 and MA 233.

MAA13 Llnear Programming

21/2:0:3
Theory and application of linear programming techniques. Simplex and revised simplex algorithms. Duality theory, dual simplex method, post-optimality analysis. Degeneracy. Transportation and assignment problems. Applications, problem formulation, computer solution. Prerequisite: MA 153.
Also listed under OR 631

MA814 Integer Programming

$2 y_{2}: 0: 3$ Solution techniques for integer and mixed-integer linear programming problems. Cutting plane methods, zero-one programming, branch and bound methods. Surrogate constraints. Quadratic programming. Applications to combinatorial analysis. Prerequisite: MA 813.
Also listed under OR 633
MA 815 Theory of Oueves
21/2:0:3
Steady-state solutions for single and multiple channels, various arrival and service distributions, queue disciplines. Transient solutions. Emphasis on theory, with solution techniques given for specific classes of queues. Prerequisite: MA 223.

MA817 Graph Theory $21 / 2,0: 3$
Concepts and theoretical considerations in structure and application of linear graphs. Representation of networks, operational configurations, physical structures of graphs. Problems of realizability and enumeration. Prerequisites: MA 153 and MA 223.

MA 818 Nonilnear Programming

21/200:3
Optimization of nonlinear functions. Classical methods. Constraints and Lagrangian methods. Duality and economic interpretation. Separable programming, feasibie directions, gradient profection. Quadratic and convex programming. industrial and engineering applications. Prerequisite: MA 813. Aleo listed under OR 832

MA 821-823, 831-832, 835-839, 841-842, 844, 848, listed above under Applied Mathematics.

MA 851 Probability Theory
31/4:0:4 $1 / 2$
Second course in probability, at graduate level. Probability of events, distribution of randorn variables, joint distribution, characleristlc functions, proofs of central limit theorem and laws of large numbers. Prerequisites: MA 103 and MA 104, MA 223 or equivaient.

MA 052 Stochastic Processes

35/. $0.44^{1 / 2}$
A first course in theory of stochastic processes with attention to epeciflc processes. Conditioning, normal and statlonary processes, Wiener processes, Poisson and renewal processes, Markov chains and processes. Prerequisite: MA 85t.

The following sequence, MA 853-855, covers material of MA $851-852$ in three courses of three units each.

MA853 Probabillty
21/2:0:3
Probability of events, distribution of random variables, joint distribution, transformations. Prerequisites: MA 103 and MA 104, MA 223 or equivalent.

MAS54 Probability II
21/2:0:3
Characteristic functions. Proofs of central limit theorem and laws of large numbers. Study of conditioning. Markov chains. Introduction to stochastic processes. Prerequisite: MA 853 or equivalent.

MAB55 Siochasic Processes $\quad 21 / 2: 0: 3$
Normal and stationary processes, Wiener processes, Poisson and renewal processes, Markov processes. Prerequisite: MA 853 or equivalent.

MA 681-882 Pinciples of Statistical

 Inference 1, ileach 21/2:0:3
Two semester sequence in statistical inference. Polnt and interval estimation of statistical parameters. Theory of statistical estimators. Fundamentals of statistical tests of hypotheses. Second serneeter extends theory of tests of hypotheses, including sequentlai tests. Non-parametric methods in statistics. MA 861 prerequisite: MA 224 or equivalent. MA 862 prarequlsite: MA 86 .

MA 803-864 Multivariate Analysis I, 11
mach $21 / 20: 3$
Multivariate normal distributlon, simple, partial, multiple correlation. Generalization of student's ratio, tasts of significance of seta of means. Tests of general linear hypothesis. Some generalizations in analysis of variance. Prerequislte: MA 862 or MA 153.

MA 865-868 Regreseion and Analysls of Varlance 1, 11

each $21 / 2: 003$ Linesr regression on one or more independent varlables. Least squara estimates of regression coefficients. Gauss-Markov theorem. Confidence regions for and tests of hypothesis about regression coefficients. Test of general linear hypothesis. Multiple classification in analysis of varlance. Power of F-test. Alternative models: Models l and It, mixed models, analysls of covariance and components of variance. Prerequisites: MA 882 and MA 153.

MA 887 Nonparametric Methods in Statistics \quad 21/2:0:3 Statistical methods not bound by assumption of known parametric form of distribution of observations. Applications to engineering and scientific research in which observations are not ordered on numerical scale. Order statistics, tolerance regions, permutation tests, goodness of fit tests, limiting distributions, large-sample properties of tests. Prerequisite: MA 224 or MA 562.

MA Bed Sequential Statistical Methods $\quad 21 / 2: 0: 3$

Fixed sample size vs. sequential statistical procedures. Wald's sequential probability ratio test. OC and ASN functions, optImal properties, approximation, generalizations. Sequential estimation, optimat stopping. Sequential design of experiments. Application to sampling inspection, inventory and control problems. Prerequisite: MA 224 or MA 562/SA 608.

MA 889-870 Advanced Statistical
 Interence I, It

each $21 / 20: 3$
First semester: general decision problem, optimal decision fules, estimation based on Bayes, minimax, admissible, maximum likelihood, sequential rules, censity and distribution estmation. Second semester hypotheses testing, including unfformly most powerlul tests, least favorable distributions, unbiasedness, rank tests, Invariance, sequential tests. MA 869 prerequisite: MA 862. MA 87C prerequisite: MA 869.

MA B71-872 Advanced Probability 1 , II each 21/2:0:3 Measure-theoretic foundations of probability. Expectations, distribution functions, characteristic functions. Modes of convergence of random variables and distribution functions. Laws of large numbers. The multidimensional, central-limit problem and related asymptotic expansions. Infinitely divisibie laws. Prerequisite: MA 823 or equivalent.

MA 873-874 Theory of Stochastic
 Processes 1, II

each $21 / 200: 3$ Foundations of stochastic processes. Kolmogorov's theorem. Properties of sample pathe. Conditional expectation. Martingales. Classes of stochastic proceases, Gaussian processes, Markov processes, others. Second-order properties. Stationary processes. Applications. Prerequlsite: MA 872 or equivalent.

MA 881-882 Statistical Analysis of Thme Serles I, II

each $21 / 2.0 .3$ Careful study of tractable models for statistical analysis of scaler time series. Models treated: (1) "error plus trend" models and (2) stationary stochastic process models with special emrphasis on autoregressive models. Estimation, tests of hypotheses and multipledeclsion procedures for thase models, spectral representation and flitering, estimation of spectral density. Prerequisitas: MA 153, MA 852 and MA 862.

MA 831-932 Selected Toplcs In the Teaching

 of Mathematics 1,11each $21 / 20: 0$
Advanced or specialized topics relevant for the teaching of mathematics in grades 7-12.

READING, PROJECT, THESIS, DISSERTATION

MA 935 Appled Sclence Profect Pelated to Public Administration 1 , $11 \quad$ each $21 / 2,0: 3$ This program is discussed in the catalog section on the Cooperative Program with the NYU Graduate School of Public Administration, see page 205.

MA 941-844 Reading In Nathematles IIV
Bach $21 / 20=3$
Coursee Intended primerily for students who have completed two years of full-time graduate study and who wish to do research in speciailzed area. Reading done under guidance of
faculty member and devoted mainly to scholarly papers. Prerequisite: permission of department.

MA 951-952 Topics in Mathematical Biology I, II

each $21 / 2.10: 3$
Topic varies at discretion of instructor. Mathematical genetics, mathematics of circulatory system, biological application of stochastic processes, applications of wave equation in biology. Course designed so that visiting professor may lecture on special area of interest.

MA 955-956 Selected Topics in Advanced

 Mathematics I, IIsach 3 3/4.0:4 $1 / 2$ Review of current mathematical research, designed for mature students. May be given by visiting professor. Specific topics vary, depending on instructor. Prerequisite: permission of department.

MA 958-059 Selected Toples in Advanced Mathematics I, II
 each $21 / 2$ 00:3

Seme course description as MA 955-956 except for credit structure. Prerequisite: permisslon of department.

MA 896 Project each 3 units Teaching materials of mathematics in grades 7.12 , selected and developed in consultation with a faculty member.

MA997 Thesia for Degree of Master of Science each 3 units Thesis to present results of independent investigation of suitable problem in abstract or applied mathematics. Study must include adequate investigation of existing literature relating to subject. Regular reports on progress of work and regular conferences with assigned faculty adviser required. Rereglstration fee, any part: 3-unit charge. Prerequisite: degree status.

MA 989 Dissertation for Degree of Doctor of Philosophy

each 3 units
Results of independent investigation of some problem in mathernatics. Must demonsirate ability to do creative work and include original research of caliber deemed worthy of publication in recognized scientific journals. Oral examination on subject of dissertation and related topics required. Minimum of 24 dissertation units requlred for degree. Reregistration fee, any part: 3-unlt charge. Prerequisite: degree staṭus and qualifying examination.

For atatistica course listing, refer to separate section tilled "Stattsicks."

Students in other departments should note that there are certain undergraduate courses in mathematics that may be accepted for graduate credit in their depantments. Such courses are identified by a dagger following the course number (e.g., MA $223 \dagger$). A list of such courses follows.

MA 153	Eternents of Linear Algebra	3 cr .
MA 154	Elements of Abstract Algebra	3 cr .
MA 177	Transformation Geornetry	3 cr
MA 178	Projective Spaces	3 cr
MA 194	History of Mathematics	3 cr .
MA 223	Introduction to Probability	3 cr .
MA 224	Introduction to Mathematical	
	Statistics	3 cr .
MA 231-232	Statistical Methods 1, 11	3 cr .
MA 238	Applied Probability	3 cr .
MA 531-532	Applied Mathematics in	
	Engineering and Sciance I, II	3 units
MA 561	Elements of Probability	3 units
MA 562	Elernents of Mathematical	
	Statistics	3 units
MA 575	Differential Geometry	3 cr .

FACULTY

Harry Hochstadt, Professor and Head of Mathematics B.Ch.E., Cooper Union; M.S., Ph.D., New York University Differenfial equations, spectral theory, functional analysis

Andrew Terzuoli, Professor of Mathematics and Administrative Officer
B.S., Brooklyn College; M.S., New York University

Probability, statistics

George Bachman, Professor of Mathematics
B.E.E., M.S., Ph.D., New York University Fields and valuations, Banach algebras, topological measure theory

Emeric Deutsch, Professor of Mathematics B.S., Pedagogical Institute of Timisoara (Romania); M.S., Ph.D., Polytechnic Institute of Brooklyn Matrix theory, functional analysis

Heinrich Guggenheimer, Professor of Mathematics Dipl., Dr.Sc., Swiss Federal Institute of Technology, Zurich (Switzerland)
Differential equations, geometry-convexity
Leon H. Hebach, Professor of Mathematics A.B., Brooklyn College; M.A., Ph.D., Columbia University Reliabilify, stochastic models of physical systems, Monte Carlo methods

Ronald Hirshon, Professor of Mathematics
B.S., M.S., Brooklyn College; Ph.D., Adelphi University Group theory

Clifford Marshall, Professor of Mathematics
B.A., Hofstra University; M.A., Syracuse University;
M.S., Polytechnic Institute of Brooklyn;

Ph.D., Columbia University
Graph theory, conflict analysis, applied probability

Stanley Preiser, Professor of Mathematics and Computer Science
B.S., CCNY; M.S., Ph.D., New York University Numerical analysis, applied mathematics, algorithms, system performance evaluation

George Weill, Professor of Mathematics Lic. Math., Dr.Sc., University of Paris (France); Ph.D., University of Southern California Complex analysis, global analysis, partial differential equations

William R. Allen, Associate Professor of Mathematics B.Ed., Chicago Teachers College; M.S., Northwestern University
Data analysis, experimental design
Burton Lieberman, Associate Professor of Mathematics B.A., Harvard University; M.S., Ph.D., New York University Differential equations, stochastic processes

Edward Y. Miller, Associate Professor of Mathematics
B.A., University of Pennsyivania; M.A., Ph.D., Harvard University
Topology
Paul F. Pickel, Associate Professor of Mathematics
B.S., Ph.D., Rice University
infinite groups, ring theory, algebraic topology

Lealey Sibner, Associate Professor of Mathematics
B.A., CCNY; M.S., Ph.D., New York University

Partial differential equations, global analysis
Hermann Waldinger, Associate Professor of Mathematics
B.A., Pomona College; M.Sc., Brown University; Ph.D., Columbia University
Combinatorial group theory
Erlch Zauderer, Associate Professor of Mathematics
B.A., Yeshiva College; M.S., Ph.D., Now York University Nonlinear wave propagation, partial differential equations, diffraction problems

Anne Houtman, Assistant Professor of Mathematics Lic. Math., University Catholique de Louvain (Belgium); M.A., Ph.D., Princeton University Statistics

Kathryn Kuiken, Assistant Professor of Mathematics B.A., M.A., Montclair State College; M.S., New York University; Ph.D., Polytechnic Institute of New York Group theory

Erwin Lutwak, Assistant Professor of Mathematics B.S., M.S., Ph.D., Polytechnic institute of Brooklyn Convexity

ADJUNCT FACULTY

Nell Bellinson, Lecturer
B.S., Polytechnic Institute of Brooklyn; M.S., Columbia University
Number theory, automorthic forms
Barbara Cain, Lecturer
B.S., Syracuse University; M.S., New York University Ordinary differential equations

Barry Glotzer, Lecturer
B.S., M.S., Brooklyn College

Group theory, number theory, computer science
Wallace Goldberg, Lecturer
B.A., Yeshiva University; M.S., New York University; Ph.D., Polytechnic Institute of New York
Ordinary differential equations
Dantel Steinltz, Lecturer
B.Sc., Hebrew University, Jerusalem, Israel; M.Sc., New York University

Algebra and logic

EMERITUS FACULTY

Aaron Fialkow, Professor Emeritus
B.S., M.S., CCNY; Ph.D., Columbia University Differential geometry, network theory

Ronald M. Foster, Professor Emeritus
B.A., Harvard; D.Sc. (Hon.), Farleigh

Dickinson University
Network theory, graph theory

MECHANICAL AND AEROSPACE ENGINEERING

At the undergraduate level the Department of Mechanical and Aerospace Engineering offers two distinct programs, each leading to the degree of bachelor of science: one in aerospace engineering and one in mechanical engineering. Each of these two degrees is offered at both the Brooklyn and the Farmingdaie campuses. At the graduate level, four separate curricula are offered: the first in applied mechanics, the second in aeronautics and astronautics, and the third and fourth in mechanical engineering. The latter two are distinguished by options in (1) mechanical analysis and design and (2) the thermalfluidsienergy field, respectively. In each of these four curricula, graduate degrees are offered at the master of science, engineer and doctor of philosophy levels.

UNDERGRADUATE PROGRAMS

Aerospace Engineering-The undergraduate aerospace program not only affords students an understanding of basic scientific principles but trains them in the application of such principles to the problems of their profession. The sophistication of aerospace systems is such that students must necessarlly master some of the more powerful analytic tech. niques in order to evolve an efficient design. The training is broad, so that graduating students can apply their knowledge to such diverse problem areas as air and noise poilution, land and sea vehicies, waste disposal, oceanographics and biomechanics, as well as assuming leadership roles in the aerospace industry.

During the first two years of study, the foundation for future professional subjects is established by courses in each of the basic sciences: physics, chemistry and mathematics. Although the student begins training in a number of engineering science areas such as com-
puters, mechanics, material science and strength of materials, the emphasis is primarily on principles and concepts in fundamental and basic sciences.

In the junior and senior years, professional courses include fluid mechanics, solid mechanics, guidance and control, dynamics, flight mechanics, propulsion and design.

The undergraduate program leads to the degree of bachelor of science in aerospace engineering and is accredited by the Accreditation Board for Engineering and Technology.

Mechanical Engineering-For undergraduates in mechanical engineering, a strong program in mathematics, physics, chemistry and computer usage provides the base for subsequent courses in engineering sciences such as solid and fluid mechanics, thermodynamics and dynamic system analysis. The curricuium then develops engineering analysis and concludes with engineering design and energy conversion. Project work in the senior year integrates the diverse disciptines in mechanical engineering.

A valuable feature of the program is the availability of technical electives in each of the last four semesters. In consultation with a faculty adviser, the student may construct a minor in one of many technical areas outside traditional mechanical engineering. Alternatively, the student may pursue areas of mechanical engineering in greater depth. In either case, the mechanical engineering program offers the basic and engineering sciences as the foundation for subsequent graduate studies and outstanding career opportunities.

The undergraduate programs lead to the degree of bachelor of science in mechanical engineering and are accredited by the Accreditation Board for Engineering and Technology.

Typical Course of Study for the Bachelor of Science Degree in Aerospace Engineering

Freshman Year

First Seme	ester
No.	Subject
\checkmark MA 101	Calculus I
$\checkmark \mathrm{PH} 101$	Introductory Physics I
OS f00AE	intro. to Programming
WHU 101	College Composition
SS 104	Contemp. World Hist.
PE 101	Physical Education

Sophomore Year MA 103 Calculus

MA 103	Calculus it
PH 103	Introductory Physics III
CM 101	General Chemistry !
CM 111	General Chemistry Lab. 1
AM 101	Graphics
AM 112	Mechanics II Hum. ISoc. Sci. ${ }^{\text {h }}$
PE 103	Physical Education

Junior Year

MA 333	Partial Diff. Equations
AM 201	Thermodynamics !
AM 231	Ftuids !
AM 271	Fund. Stress Analysis 1
AM 311	Nechanics of Fiight ! Hum Soc. Sci.

Senior Year

AM 233	Fluids ill	3	0	3
AM 261	Vibrations	3	0	3
- AM 281	Advanced Stress Analysis 1	$21 / 2$	$11 / 2$	3
AM 312	Mechanics of Flight I!	3	0	3
AM 343	Aircraft Design II	2	3	3
	Free elective	3	0	$\frac{3}{18}$

AM 241 Propulsion
AM 344 Spacecraft Design
AM 350 Fluids Laboratory Technical electives'

AM 232	Fluids II	3	0	3
AM 251	Dynamics	3	0	3
AM 252	Oynamic System Response	3	0	3
AM 273	Fund. Stress Analysis II	$21 / 2$	$11 / 2$	3
AM 342	Aircratt Design 1	2	3	3
	Hum.JSoc. Sci.		3	0

Hours/Week			
Ci.	Lab.	C.	
4	0	4	
$31 / 2$	$11 / 2$	4	
3	0	3	
3	0	3	
3	0	3	
0	2	0	
		17	

MA 104 Appfied Diff. Equations
CM 102 General Chemistry II

CM 112 Genera! Chemistry Lab. It

3	0	3
$21 / 2$	0	$21 / 2$
0	$11 / 2$	$1 / 2$

AM 121 Mechanics of Materials
AM 341 Intro. to Aerodesign
MT 302 Structure of Metals HumiSoc. Sci.' ${ }^{\text {n }}$
PE 104 Physical Education

3	$1 / 2$	$1 / 2$
3	0	3

No. Subject

MA 102 Calculus It
PH 102 Introductory Physics II
Mechanics I
HU 200 Intro. to Literature
Hum. Soc. Sci. ${ }^{\text {h }}$
Physical Education

2	3	3
2	0	2
3	0	3
0	2	0

3	0	3
2	3	3
0	3	1
9	0	$\frac{9}{16}$

Total credits required for graduation: 136
'Free electives are subject to a departmental adviser's approval.
'ROTC students may substitute four (4) military science courses of zero (0) credits for PE 101-104. Additionally, up to six (6) credits from the following four (4), 2-credit courses: MS 131, 142, 143, 146, may be used to substitute for the free elective(s) which exist in the aerospace and mechanical engineering programs.
${ }^{\dagger}$ Approved technical electives are listed as follows: AM 234, AM 262 and AM 282. The choice of any of the above electives or possible other technical electives must be accompanied by a departmental adviser's approval.
nhequirements in humanities and social sciences-the student must take HU 101 and either HU 200 and SS 104 or IS 140 and IS 141. Students who are placed in HU 103 on the basis of the English Composition Placement Test administered at Polytechnic to all incoming students may substitute HU 103 for HU 101. Students placed in HU 008 or HU 009 must complete this noncredit writing course before taking HU 101 (or HU 103).

In addition, the student is strongly urged to select an area of concentration (such as literature, communications, the arts, or philosophy and comparative religion in the Department of Humanities or political science, economics, history, anthropology or psychology in the Deparment of Social Sciences) and elect two or three courses in this concentration, in consultation with the departmental adviser. A modern language may be chosen as a suitable concentration but a student without prior knowledge of the language must plan to devote at least 12 credit hours to the subject.

For the remaining credits in the humanities/social sciences requirement, the student should select courses in areas other than that of the concentration. Additional courses in the humanities and soclai sciences may be taken as free electives, the total number of humanities and social science credits required being at least twenty-four.

Typical Course of Study for the Bachelor of Science Degree in Mechanical Engineering

Freshman Year

First Semester			Hours/Week		Second Semester			Hours/Week	
No.	Subject	Cl.	Lab.	Cr.	No.	Subiect	Cl .		Cr .
MA 101	Calculus I	4	0	4	MA 102	Calcutus II	4		4
PH 101	Introductory Physics !	3	0	3	PH 102	Introductory Ptysics 11	$31 / 2$	$11 / 2$	4
CS 100ME	Intro. to Programming	2	0	2	CM 101	General Chemistry I	$21 / 2$	0	$2^{1 / 2}$
HU 101	College Composition	3	0	3	CM 111	General Chemistry Lab. I	0	$11 / 2$	1/2
SS 104	Conternp. Worid Hist.	3	0	3	HU 200	Intro. to Literature	3	0	3
PE 101	Prysical Education	0	2	0		Hum/Soc. Sci. ${ }^{\text {b }}$	3	0	3
				15	PE 102	Physical Education	0	2	0
Sophomore Year									
MA 103	Calcutus If	3	0	3	MA 104	Applied Diff. Equations	3	0	3
PH 103	Introductory Physics til	$21 / 2$	$11 / 2$	3	MT 302	Structure of Metais	2	0	2
CM 102	General Chemistry II	$21 / 2$	0	$2^{1 / 2}$	AM 112	Mechanics if	3	0	3
CM 112	General Chemistry Lab. If	0	$11 / 2$	1/2	AM 121	Mechanics of Materials	3	0	3
AM 101	Graphics	1	3	2		Science elective	3	0	3
AM 111	Mechanics I	3	0	3		Hum. Soc. Sci. ${ }^{\text {n }}$	3	0	3
	Hum.ISoc. Sci. ${ }^{\text {n }}$	3	0	3	PE 104	Physical Education	0	2	0
PE 103	Physical Education	0	2	0					17
				17					
Junior Year									
MA 333	Partial Diff. Equations	3	0		AM 202	Thermodynamics 11	3	0	3
AM 201	Thermodynamics 1	3	0	3	AM 232	Fluids II	3	0	3
AM 231	Fluids 1	3	0	3	AM 252	Dynamic System Response	3	0	3
AM 301	Synth. of Mech. Systs.	3	0	3	AM 302	Anal./Design of Mach. Elem.	3	0	3
AM 351	ME Laboratory I	1/2	$11 / 2$	1	AM 331	Comp. Meth. in Design	2	3	3
	Free elective ${ }^{\text {i, }}$	3	0	3		Free elective ${ }^{\text {l/r }}$	3	0	3
				16					18
Senior Year									
AM 203	Heat Transfer	3	0	3	AM 204	Energy Transfer Design	3	0	3
AM 261	Vibrations	3	0	3	AM 272	Stress Anal. of Mech. Comp.	3	0	3
AM 271	Fund. Stress Analysis 1	3	0	3	AM 321	Instrumentation \& Control	3	0	3
AM 352	ME Laboratory It	1/2	$11 / 2$	1	AM 353	ME Laboratory 11	$1 / 2$	$11 / 2$	1
AM 361	Project Proposal	0	6	2	AM 362	ME Project	0	6	2
	Technical electives	3	0	3		Technical elective ${ }^{\text {s }}$	3	0	3
	Hum/Soc. Sci. ${ }^{\text {² }}$	3	0	3		Hum. 150 . Sct. ${ }^{\text {. }}$	3	0	3
				18					18

Total credits required for graduation: 136

[^13]
EVENING PROGRAM-
 Mechanical Engineering

The degree requirements for part-time evening students in the mechanical engineering program are in all respects identical to those for full-time students. The evening program is structured so that a student may complete all requirements in eight years without summer work.

The first four years consist of the basic mathematics, humanities, social sciences, physical sciences and engineering sciences contained in the freshman-sophomore ye r of the full-time program. in the remaining four years, the program consists of advanced undergraduate engineering courses, these four years being offered on an alternating basis. The fifth and sixth years are interchangeable as are the seventh and eighth. Thus, a student may graduate in eight years.

Course of Study for the Evening Program in Mechanical Engineering

First Year

Firat Semester
No. \quad Subject
HU 101
College Composition
MA 101
Calculus I

Second Year

HU 200	Intro. to Literature	3	0	3
MA 103	Calculus IfI	3	0	3
PH 102	Introductory Physics II	$31 / 2$	$11 / 2$	4
				10
Third Year				
AM 116	Engineering Mechanics I	2	0	2
CM 109	General Chemistry 1	$2^{1 / 2}$,	21/2
CM 111	General Chemistry Lab. I	0	11/2	1/2
	Hums Soc. Scl. elective	3	,	3

Fourth Year

AM 118	Engineering Mechanics ill	2	0	2
AM 121	Mechanics of Materials	3	0	3
	HumJSoc. Sci. elective	3	0	3
				8

Fifth Year* (81-82, 83-84)
MA 333 Partial Diff. Equations
AM 201 Thermodynamics I Hum/Soc. Sci. elective

Seventh Year $\dagger(8182,83-84)$

AM 202	Thermodynamics II	3	0	3
AM 261	Vibrations	3	0	3
AM 351	ME Laboratory I	$1 / 2$	$11 / 2$	$\frac{1}{7}$

Eighth Yeart ($82-83,8485$)
AM 203 Heat Transfer
AM 361 Project Proposal

3	0	3
2	3	3
0	6	-2
		8

AM 231	Fluids I	3	0	3
AM 252	Dynamic System Response	3	0	3
	Hum./Soc. Sci. elective	3	0	$\frac{3}{9}$

AM 272	Stress Anal. of Mech. Comp.	3	0	3
AM 301	Synth. of Mech. Systs.	3	0	3
	Free elective	3	0	3
				9

Second Semester			Hours/Week	
No.	Subject	Cl.	Lab.	Cr .
MA 102	Calculus if	4	0	4
PH 101	Introductory Physics I	3	0	3
SS 104	Contemp. History	3	0	3
				10
AM 101	Graphics (81-82, 83-84) or		3	2
CS 100	Intro. to Programming (82-83, 84-85)	2	0	2
MA 104	Applied Diff. Equations	3	0	3
PH 103	Introductory Physics III	$21 / 2$	$11 / 2$	3
				8
AM 117	Engineering Mechanics II	2	0	2
AM 101	Graphics (8182, 83-84) or	1	3	2
CS 100	intro. to Programming (82-83, 84-85)	2	0	2
CM 102	General Chernistry II	$21 / 2$	0	21/2
CM 112	General Chemistry Lab. II	0	11/2	1/2
				7
MT 302	Structure of Metals	2	0	2
	Science elective	3	0	3
	Hum/Soc. Sci. elective	3	0	3
				8

AM 232	Fluids II	3	0	3
AM 321	Instrumentation \& Control	3	0	3
AM 352	ME Laboratory II	$3^{1 / 2}$	$11 / 2$	1
	Technical elective	3	0	$\frac{3}{10}$
			0	3
AM 204	Design of Energy Transfer	3	0	3
AM 353	ME Laboratory II	$1 / 2$	$1 / 2$	1
AM 362	ME Project	0	6	2
	Technical Elective	3	0	$\underline{3}$
				9

Total credits required for graduation: 136

[^14]\dagger Seventh and Eighth years are interchangeabie.

GRADUATE PROGRAMS

Programs of study are offered leading to the degrees of master of science, engineer, and doctor of philosophy in mechanical engineering, in aeronautics and astronautics and in applied mechanics. In mechanical engineering the student may specialize in either (1) the mechanical analysis and design option or in (2) the thermal/fluids/energy option. A bachelor's degree in mechanical, aerospace, civil or chemical engineering is generally required. Applicants with degrees in other fields may be admitted with deficiencies. Mathematics or physics majors who have completed an undergraduate course in strength of materials may be admitted to the applied mechanics program without deficiencies.

REQUIREMENTS FOR THE MASTER'S DEGREE

Core Courses:

A. For mechanical engineering (mechanical analysis and design option) and for applied mechanics

AM 601-02	Stress Analysis I\& ll	6
AM 651-52	Advanced Dynamics 1 \& II	6
AM 653-54	Dynamics of Machines; Mechanical Vibrations	
AM 971-72	Seminar in Mechanical and Aerospace Engineering	0
		12
Students who have not achieved the level of mathematical proficiency required by MA 333 are required to complete MA 531-32.		
B. For mechanical engineering (thermal/fluids/energy option) and aeronautics and astronautics		
AM 701	Thermodynamics I	3
AM 740	Principles of Fluid Dynamics	3
AM 710	Convection	3
AM 971-72	Seminar in Mechanical and	
	Aerospace Engineering	0

Students who have not achieved the level of mathematical proficiency required by MA 333 are required to complete MA 531-32.

Programs:

A1-Mechanical Engineering (Mechanical Analysis and Design Option)
Core Courses (A)
Select 6 additional units from
AM 603-04 Elasticity I \& II
AM 613-14 Theory of Plates and Shells
AM 651-52 Advanced Dynamics I \& II Electives

A2-Applied Mechanics
Core Courses (A)
AM 603-04 Elasticity 1 \& II
AM 613-14 Theory of Plates \& Shells 6
Electives'

B1-Mechanical Engineering (Thermal/Fluids/Energy
Option)
Core Courses (B) 9
Select 12 additional units from
AM 702 Thermodynamics II
AM 711 Convective Heat Transier
AM 712 Conduction Heat Transfer AM 713 Radiative Heat Transfer
AM 731 Analytical Methods in Thermal

AM 741 Compressible Flow
AM 742 Viscous Flow Electives

B2-Aeronautics and Astronautics. Core Courses (B)
Select 12 additional units from
AM 731 Analytical Methods in Thermal
AM 732 Computational Methods in Thermal \& Fluid Mechanics Compressible Flow Viscous Flow Vehicle Dynamics I Theory of Propulsion Electives

In each of the above master's degree programs a student may pursue a project (up to six units counted toward the degree) or a thesis (up to twelve units counted toward the degree) under the guidance of a faculty sponsor or may elect to complete the program solely with courses. All elective courses must be approved by a graduate adviser and should be consistent with a definable objective associated with the master's program.
In all cases, at least 24 units of work must be completed by the student in departmental courses (including thesis or project) at Polytechnic.

The department limits to nine the total of transfer, readings (guided studies), and validation credits that can be offered for the master's degree. The certification of validation credits is administered by the departmental graduate advisers.

A student must establish an overall B average in those departmental courses submitted in partial fulfiliment of the degree requirements. All courses submitted for the degree must have been completed within the fouryear period prior to the awarding of the degree.

[^15]
REQUIREMENTS FOR THE ENGINEER DEGREE

A master's degree in mechanical, aerospace, civil or chemical engineering that meets one of the department specialization area requirements is generally required. Applicants with master's degrees not meeting these requirements may be conditionally admitted with deficiencies as evaluated by a deparmental graduate adviser. Each candidate must complete a program of study of at least 36 units beyond the master's degree as approved by an appropriate departmental graduate adviser. This program of study will normally include at least 24 units of work within the department; part of this work will include a project of 6 but not more than 12 units. Course work may be substituted for the project if the applicant's background includes satisfactory evidence of equivalent experience as evaluated by the guidance committee. In addition, satisfactory attendance in AM $971-72$ (Seminar in Mechanical and Aerospace Engineering) is required for two semesters.

A student must establish an overall B average in those departmental courses submitted toward fulfiliment of the degree requirements.

REQUIREMENTS FOR THE DOCTOR'S DEGREE

A master's degree in mechanical, aerospace, civil or chemical engineering that meets one of the department's area requirements is generally required. Applicants with degrees not meeting these requiraments may be admitted with credit for previous work as evaluated by a departmental graduate adviser.

Each candidate for the Ph.D. must complete a minimum of 38 units of approved courses beyond the master's degree. In addition, registration for a minjmum of 24 units of dissertation research is required at the rate of a minimum of three units per term, continuously, until the dissertation is completed and accepted. Satisfactory attendance in AM 971-72 (Seminar in Mechanical and Aerospace Engineering) is required each semester (normally, two semesters for the M.S. and four additional semesters for the Ph.D.). All of the above requirements must be met within a seven-year period prior to awarding of the degree.

UNDERGRADUATE COURSES

AM 101 Graphics

1:3:2
Sketching and instrument drawings. Projection theory, multiview isometric, oblique, A.N.S.I. standards: dimensioning, sections, auxiliaries, fasteners, working and assembly drawings. Descriptive geometry: points, lines planes. Graphical mathematics: vectors, calculus. Project: simple concepts relating to student's major.

AM141 Mechanics 1 3:0:3
Three dimensional vector treatment of the static equilibrium of particles and rigid bodies. Equivalent force and couple
systems. Distributed force systems. Static analysis of trusses, trames and machines. Friction, impending motion. Method of virtual work. Potential energy and stability of equilibrium. Prerequisites: PH 101 and MA 102.

AM 112 Mechanics 11
3:0:3
Three-dimensional vector treatment of the kinematics and kinetics of particles and rigid bodies using various coordinate systems. Newton's laws, work, energy, impuise, momentum, conservative force fields, impact. Rotation and plane motion of rigid bodies. Prerequisite: AM 111.

AM 115 Engineering Mechanics
4:0:4
Equivalent to AM 116 and AM 117. Prerequisites: MA 102 and PH 101.

AM 116 Engineering Mechanles l 20:2
Three-dimenstonal vector treatment of the static equilibrium of particles and rigid bodies. Equivalent force and couple systerns. Static analysis of trusses, frames and machines. Friction, impending motion. Prerequisites: PH 101 and MA 102

AM 117 Engineering Mechanics II
20:2
Three-dimensional vector treatment of the kinematics and kinetics of particles using various coordinate systems. Newton's laws, work, energy, impulse, momentum, conservative force fields, impact. Prerequisite: AM 116.

AM118 Engineering Mechanics HI 20:2
Method of virtual work. Potential energy and stability of equilibrium. Distributed force systems. Kinematics and kinetics of rigid bodies. Rotation and plane motion of rigid bodies. AM 116, $A M 117$ and $A M 118$ equivalent to $A M 111$ and $A M 112$. Prerequisite: AM 117.

AN 121 Mechanics of Materials
3:0:3
Basic principles of stresses and strains of members subfected to direct force, torsion and bending. Deflections of beams. Statically determinate and indeterminate probiems. Column stabitity. Prerequisite: AM 111 or AM 115 or AM 116.
Also Ilsted under CE 202

AM 201 Thermodynamics 1
3:0:3
Basic energy concepts. Fundamental laws of thermodynamics.
Properties of working substances. Open and closed systems. General applications to various engineering systems. Prerequisites: MA 103 and PH 102.

AM 202 Thermodynamics II 3:0:3
Continuation of AM 201. Applications of laws of thermodynamics to power-producing cycles and to refrigeration cycles. Properlies of mixtures. Energy and equitibrium aspects of chemical reactions. Introduction to kinetics of combustion. Prerequisite: AM 201.

AM203 Heat Transter

$3: 0: 3$
Introduction to conduction, convection and radiation heat transfer. Steady-state and transient analysis of multidimensional conduction systems. Numerical solutions augmented with computer programs for various modes of heat transfer. Prerequisite: AM 231.

AM 204 Design of Energy Transfer and Conversion Systems

3:0:3
Principles of thermodynamics, fluid dynamics and heat transfer applied to design of heat exchangers. Application of first and second laws of thermodynamics to design and evaluation of energy conversion cycles. Detailed heat exchanger or energy systern design required of student. Prerequisites: AM 202 and AM 203.

AN211 Ststistical Themodynamics* $3: 0: 3$
Review of elementary probability theorems, statistical mechanics of noninteracting particles. Development of engineering thermodynamic expressions. Applications to engineering problems including deduction of thermodynamic properties for elementary gases and solids: thermal radiation from solids. Calculation of transport properties. Senior elective. Prerequisite: AM 201.

AM 212 Air Conditioning and Refrigeration* 2:0:2 Application of thermodynamics and other sciences needed for rational approach to solution of engineering problems in air conditioning and refrigeration. Senior elective. Prerequisite: AM 201.

AN 213 Transport Processes*
3:0:3
Extension of principles developed in AM 201, AM 203 and AM 231. Detailed study of energy release and momentum, heat and mass transfer processes. Unified treatment using transporl phenomena methods. Senior elective. Prerequisite: AM 203.

AM231 Flulds I
3:0:3
Introduction to fluids, kinematics, hydrostatics, thermodynamics. Derivation of continuity, momentum and energy equations. Flux concepts and relation with divergence theorem. Control volume equations and applications. Differential equations and applications. Bernoulli equation. Discussion of vorlicity and stream function. Potential flows over simple geometric configurations. Prerequisites: MA 333 and AM 201.

AM 232 Fluids II
3:0:3
Flow in pipes and ducts. Students required to design flow measuring and piping systems. One-dimensional gas dynamics. Convergent-divergent nozzles. Normal and oblique shocks. Expansion fans. Effects of friction and heat addition. Prerequisite: AM 231.

AM 233 Fluids III
3:0:3
Introduction to viscous flow theory. Viscous effects. Stressstrain relations. Derivation of Navier-Stokes equations. Rayleigh problem and diffusion time. Similarity theory. PrandtI boundary layer equations. Flow over a flat plate. Approximate methods, numerical methods. Separated flows. Introduction to turbulent boundary layer theory. Prerequisite: AM 232.

AM 234 Flulds IV 3:0:3
Review of fluid dynamic equations. Incompressible airfoil theory, circulation, lift, Kutta condition. Finite wing theory. Acoustic motion. Method of characteristics. Compressible airfoil theory. Oblique shocks and expansion fans. Prerequisite: AM 232.

AM 241 Propulsion
3:0:3
Basic principles of operation, performance, design methods for flight vehicle propulsion systems. Airbreathing engines: turbojet, turboprop, turbofan and ramjet. Liquid and solid propellant chemical rockets. Elements of nuclear and eiectrical rocket propulsion systems. Prerequisites: AM 233 and AM 311.

AM 242 Rocket Propulsion*

Introduction to development and design of rocket engines. Basic principles of mechanics, thermodynamics, aerodynamics and combustion reviewed. Propellants, rocket engine elements (solid and liquid), heat transfer, cooling accessories, rocket testing and problems associated with rocket design end development. Senior elective. Prerequisite: senior status.

AM 243 Turbomachinery*

Thermodynamics, fluid mechanic principles and elements of turbomachinery (fans, pumps, compressors, turbines) including design principles and operation of turbomachines. Senior elective. Prerequisite: senior status.

AM251 Dynamics
3:0:3
Motion of a parlicie, systems of particles, rigid bodies. Momentum and energy principles and applications. Impulsive forces and moments. Projectiles with air resistance. Gyroscopic theory. Prerequisites: AM 112 and MA 333.

AM 252 Dynamic Systems Response

3:0:3
Basic dynamic behavior of mechanical, fluid, thermal and electrical elements from simple element behavior to complex systems. Modeling and formulation of system equations. Analogies stressed and computer simulations introduced. Generatized first-and second-order dynamic systems subject to various excitations. Prerequisite: AM 112 or AM 115 or AM 117.

AM 261 Vibrations

3:0:3
Review of mechanics of vibrating systems. Equations of motion. Lagrange's equation and Rayleigh's method. Free vibrations of undamped and damped single degree of freedom systems. Forced vibrations. Two degrees of freedom vibration. Methods in multi-degree of freedom systems. Prerequisite: AM 251 or AM 252.

AM 262 Noise and Acoustics
3:0:3
Nature of sound waves, sound propagation and generation. Engineering manipulations with acoustic units and quantities. Subjective response to noise and damage criteria. Fundamentals of noise creation and transmission. Environmental and aircraft noise sources. Acoustic instrumentation. Noise control approaches. Prerequisite: junior status.

AM263 Advanced Vibrations* 3:0:3
Lagrangian mechanics. Normal mode analysis of free and forced vibration. Energy and numerical methods in vibration analysis. Introduction to analysis of nonlinear oscillatory systems. Prerequisite: AM 261.

AM 271 Fundamentais of Stress Analysis 1

3:0:3
Stress and strain in two dimensions. Equilibrium equations, compatibility, superposition. Cylindrical coordinates: thickwalled cylinders. Plane stress, plane strain. St. Venant's principle. Stress concentrations. Torsion of mechanical elements: solid sections. Pure bending; bending of thin-walied, unsymmetric, open-section beams. Shear center. Initial curvature and axial load effects on bending. Prerequisites: MA 104 and AM 121.

AM 272 Stress Analysis of Mechanical Components 3:0:3 Beams on elastic foundation. Thin circular cylindrical shells. Discontinuity methods. Optimization of design by geometry and material selection. Thick-walled cylinders. Shrink tits. Rotating machinery. Thermal stresses in rotors. Torsion of mechanical elements. Prerequisite: AM 271.

AM 273 Fundementals of Stress Analysis if $\quad 21 / 2: 11 / 2: 3$ Torsion of thin-walled open and closed section beams. Mernbrane and hydrodynamic analogies, Bredt's formula, multi celled cross sections. Strain energy, Castigliano's theorems. Statically indeterminate beams, frames, rings. Laboratory: experimental stress analysis, strain gages, brittle coating, photoelasticity, analogies. Prerequisite: AM 271.

AM 291 Advanced Stress Anahysis !
21/2:11/2:3
Elastic and inelastic buckling of columne, frames, plates, shelis, effective width, sheet-stringer combinations, torsional instability, energy methods for approximate solutions. Continuation of experimental stress analysis methods developed in AM 273. Prerequisite: AM 273.

AN 282 Advanced Stress Analysis II $3: 0.3$ Introduction to matrix algebra. Matrix analysis of framed structures: truss, beam, frame, grid. Static and kinematic indeterminacies. Flexibility and stiffness coefficients, reciprocal rela-
tions, symmetry. Displacements in determinate structures. Flexibility and stiffness methods applied to statically indeterminate structures. Current programming techniques. Prerequisite: AM 281.

AN 301 Synthesis of Mechanical Systems 3:253
Kinematic analysis of linkages, velocity and acceleration images, instantaneous centers. Design of cams, gears, gear trains. Geometric and aigebraic methods of synthesis for path and function generation. Prerequisite: AM 112 or AM 115 or AM 117.

AM 302 Analysis and Design of Machlne Elements
 3:0:3

Application of basic principles to in-depth analysis and design of selected mechine elements, typically: brakes, clutches, springs, screws, shafting, belt and gear systems. Fundamentals of friction, wear, boundary, hydrodynamic lubrication. Engineering principles from several disciplines applied to individual problems. Prerequisites: AM 121 and MA 333.

AM 311 Mechanice of Filght I

300:3
Principles of powered flight; devetopment of equations of motion, performance of subsonic and supersonic airplanes, discussion of characteristics of varlous power plants. Properties of fluids, dimensional analysis, one-dimensional flows, subsonic airfoil and wing and propelter theory and practice. Prerequisites: AM 112 or AM 115 or AM 117 and AM 341.

AM312 Mechanles of Flight If

$300: 3$
Static and dynamic stability of aircraft and missiles. Development of rigid body equations of motion, Iinearization, stability derivations, longitudinal and lateral-directional disturbed motion of airplanes. Manual and automatic control systems and handling qualities criterfa. Prerequisite: AM 311.

AM 321 instrumentation and Control
3:0:3
Operation of mechanical and electromechanical instrument components. Active and passive transducer elements for steady and non-steady temperature, pressure, displacement, acceleration, measurements. Instruments and feedback control systems. Introduction to statistical analysis of data. Design of measurement or control systems. Prerequitaite: AM 251 or AM 252.

AM 322 Machine Control Systems*

$300: 3$
Application of feedback principles to machine systems. Use of classical and transform methods for transient and steady-state solutions. Prerequisite: AM 321.

AM 331 Computer Methods in Design
2:3:3
Introduction to computer as design tool. Discussion of visual displays. Drawing and design capability of modern computing systems. Iteration, parametric studies and optimization of mechanical engineering designs. Studies and design projects from thermal, fiuid and mechanical systems. Efficient numerical computational techniques. Prerequisites: CS 100 and junior status.

AM341 Introduction to Aerodealgn
2:3:3
Consideration of the nature of design synthesis and analysie as it pertains to aerospace. Qualitative and quantitative aspects of feasibility, design methodology, modeling, use of computers, iteration and optimization in terms of design profect. Prerequisite: AM 121.

AM 342 Alrcraft Design I

Preliminary design of commercial widebody jet transport. Development of aerodynamic configuration, power plant selection and layout, weight and balance estimation. Pertormance, stability and control analysis, airload estimation. Prerequisite: AM 341 .

AM 343 Alrcraft Design II
2:3:3
Structural design of airplane based on specification and aerodynamic requirements. Discussion of construction materials, forming, fasteners, fittings. Structural arfangement of landing gear, fuselage, stress analysis. Prerequisite: AM 342.

AM 344 Spacecraft Design
2:3:3
Design of hypervelocity vehicles. Trajectory and orbit analysis, problerns of teentry, propulsion systern design, staging. Design of a boost vehicle for satelite missions, and a re-entry vehicle for earth return. Prerequisite: AM 343.

AM 350 Fluids Laboratory
0:3:1
Laboratory experiments in the area of inviscid and viscous flows. Prerequisite: AM 233.

AM351 ME Laboratory 1
1/2:11/2:1
Instrumentation principles. Experiments related to thermodynamics, system modeling and basic instrumentation. Prerequisites: AM 201 and AM 112

AM352 ME Laboratory ll $1 / 2: 1 / 2: 1$ Experiments related to thermodynamics, fluid properties, systems dynamics, vibrations. Prerequisite: AM 261.

AM353 ME Laboratory III $1 / 2: 1 \frac{1}{2}: 1$
Experiments in heat transfer, fluid flow, stress and strain. Prerequisite: AM 203.

AM 361 ME Project Proposal
$0: 6.2$
Basic design and analysis of engineering project. Formulation of formal plan of execution of design project. Prerequisite: senior status.

AM 382 ME Project
0:6:2
Execution of design project as proposed in AM 361. Prerequisite: AM 361.

AM 363-366 ME Prolect or Study 1-4 cr. as arranged Continuation of AM 362 on approval of project adviser. Directed studies or special topics in mechanical engineering. Prerequisite: AM 362.

AM 381-382 Senior Honors Work in Mechanical

 Engineeringcredit to be arranged
Independent work undertaken by qualified honors students in mechanical engineering. Course material arranged by faculty steering committee. Prerequisite: senior status.

AM 383-384 Senior Honors Work in Aerospace Engineertng credit to be arranged

For aerospace majors; equivalent in scope to AM 381-382.
AM 391-392 Guided Studies in Mechanical
Engineering 1,11 credit to be arranged
Senior-year sequence for qualified students in mechanical engineering. Course material arfanged by committee of faculty members.

AM 393-394 Guided Studies in Aerospace
Engineering I, It credit to be arranged
For aerospace majors; equivalent in scope to AM 391-392.

GRADUATE COURSES

AM 601 Stress Analysis 1
$21 / 2: 0.3$
Review of theory of beam bending. Use of Castigliano's theorem for determining deformations and statically indeterminate loads. Columns, beam columns, beams on elastic foundations. Circular cylindrical shells. Discontinuity analysis in composite structures.

AM 602 Stress Analysis II

$21 / 2: 0: 3$
Stress-strain relationships. Two-dimensional stress and strain analysis. Equations of compatibility and equilibrium. The Airy stress function. Solutions of vartous classical, two-dimensional problems. Torsion of prismatic bars, open and closed thinwalted structures, and multi-cellukar structures.

AM 603-604 Elasticity Itif*

each $21 / 2: 0: 3$
Stress and strain tensors. Generalized Hooke's Law. Formulation of elasticity problems. Plane stress and strain problems. Solution by complex variables. Stress concentrations. Rotating discs and cylinders. Thermal stresses. Three-dimensional problems. St. Venant problems, extension, flexure, torsion. Energy principles and variationai methods. Approximation techniques. Pserequisite: adviser's approval.

AM 605 Limit Analysis of Structures*

21/2:0:3
Plastic analysis of beams, frames, arches. Deformation under combined stress. Upper- and lower-bound theorems. Beams under combined stress; collapse of circular plates limiting loadcarrying capacity of shells. Prerequisite: AM 601 or AM 603.

AM606 Applied Plasticlty ${ }^{*}$

2 $1 / 2: 0 ; 3$
Analysis of stress and strain, plastic constitutive relationships. Yielding criteria, extremum principles. Problems of plates and shells for various types of plasticity. Slip-line field, analytical and numerical procedures. Steady and non-steady motion in two dimensions. Plastic instability. Prerequisite: AM 602.

AM 607 Continuum Mechanics*

$21 / 2: 0 \cdot 3$ Cartestan tensors introduced, and employed in analysis of stress, and strain. Laws of mechanics and thermodynamics for general material. Introduction of various constitutive relations. Specialization of governing equations to elasticity, thermoelasticity, plasticity, viscoelasticity and creep, and fluid mechanics. Prerequisite: adviser's approval.

AM611 Advanced Mechanics of Materials $\quad 21 / 2: 0: 3$ Unsymmetrical bending of elastic bars, shear center for merrbers of thin-walled, open cross section, curved beams, beams on elastic foundations, membrane and bending stresses in shells. Prerequisite: AM 121 or CE 202.
Also listed under CE 621

AM 613 Theory of Platers

21/2:0:3
Bending theories of elastic plates of various shapes from equilibrium considerations. Equilibrium equations and boundary conditions derived from energy principles. Exact and approximate solutions (series, Rayleigh-Ritz, Galerkin). Introduction to large deflection and buckling theories. Application to structures and vehicles. Prerequisite: adviser's approval.

AM 614 Theory of Shells

21/2:0.3
Membrane theory of arbitrary thin shelis and linear bending theory of shells with emphasis on circular cylinders. Derivation of buckling theory of circular cylindrical shells. Applications include shell-type roaf structures, pressure vessels, underwater structures, vehicles and aerospace structures. Prerequisite: adviser's approval.

AN 615 Energy Methods In Siructural Analysls*

21/2.0:3 Unifted treatment of structural analysis using the principles of virtual work, total potential energy, total complementary potential, and mixedenergy. Appilcations to trusses, beams, frames, rings, sandwich structures, and to plane stress and piane strain problems. Rayleigh-Pitz procedure, Galerkin method. Prereq. uisite: adviser's approval.

AM646 Theory of Elastic Stablilty*
21/20:3
Energy methods employed to investigate bucking loads of structural configurations composed of beams, rings, plates,
sheils. Apptication to problems of technical interest associated with structures and vehicles. Prerequisite: adviser's approval.

AM 621 Finite Element Analysis of Structural

 Systems*21/2:0:3 Derivation of element stiffness matrices. Construction of general stiffness matrices in giobal coordinates. Application to probtems in plane stress, platea and shells under static and dynamic loads. Emphasis on problems fnvolving analysis of systems with many unknowns. Prerequisite: adviser's approval. Also Itsted under CE 616

AM 623 Computational Methods in Mechanical and Aerospace Engineeing!*
 21/2:0.3

Integrated survey of principal methods in obtaining approximate solutions to boundary value problems that occur in structurel analysis. Particular attention to continuum techniques such as Fourier, Ritz, Galerkin, least square and coltocation methods. Prerequisite: adviser's approval.

AM 824 Computational Methods in Mechanical and Aerospace Engineering Il^{*}
 21/2:0:3

 Continuation of AM 623 with particuiar emphasis on numerical techniques of analysis, such as finite differences, tteration procedures and Runge-Kutta method. Consideration of recently developed hybrid methods. Itlustrative examples from contemporary literature in structural analysis. Prerequisite: AM 623.AM625 Experimental Stress Analysis*
1:21/2:3
Application of experimental stress analysis techniques to aerospace, civil and mechanical engineering systems. Mechanical strain gages, electrical strain gages and associated instrumentation, brittle coating, photoelasticity and photostress, moire fringes. Static and dynamic loading; creep and fatigue of structural elements. Prerequisite: adviser's approval.
Also listed under CE 623

AM 626 Adyanced Topics in Experimental

 Stress Analysis*$11 / 2: 21 / 2: 3$
Course orientation is toward advanced research. Introduction to modern optics followed by analysis of optical tmage formation. Theory of holography and wave propagation in anisotropic media; advanced topics in three-dimensional photoetasticity, moire analysis of tree-dimensional surfaces by means of holography and other optical techniques. Prerequisite: AM 625.

AM 630 Design Methods for Power Plant Structures

21/200:3
Fracture analysis. Theories of faiture. Classification of stresses in power plant structural components. Introduction to limit analysis. Establishment of allowable stress intensities. Fatigue analysis. Thermat ratcheting. Understanding of the criteria in Sections III and VIII, Division 2, of ASME Code. Pferequisite: adviser's approval.

AM 632 Piping Analysis
21/2:003
Free themal deformations and stresses in piping branches. Free deformations due to weight, wind and seismic toading. Support reactions. Matrix methods for load transfer, axes transformation and deformation transfer. Flexibility and stiffness matrices. Elastic center analysis. Flexibility and stiffness methods. Prerequisite: AM 601.

AM 634 Pressure Vessel Analysis
$21 / 2003$ Stress and deformation analysis of pressure vessel components. Discontinulty analysis. Stress intensities in the primary, secondary and peak categories. Themnal stresses. Review of ASME pressure vessel analyses. Prerequieite: AM 601.

AM 637 Themal Streas Analysial* $\quad 21 / 2003$
Thermal stress-strain relationships. Equivalent thermal loads. Extensional deformations. Stress-free temperature distributions. Plane stress, plane strain, thermal shock. Thermal beam stresses and deformations. Thermal stresses in plates and shells. Prerequisite: AM 602.

AA4 638 Thermal Strees Analyais 1**
$2 y_{5}: 0,3$
Energy methods of thermal stress analysis, including modifled Castigilano's theorem, complementary energy, reciprocal theorems, and Rayleigh-Ritz technique. Bending of rings and circular plates. Deformation of cylindrical shells under combined axial and radial temperature distributions. Thermal instability: fings, plates. Prerequisite: AM 637.

AM851 Advanced Dynamics I
 21/2:0103

Kinematics and dynamics of a particle in spece; translating and rotating frames of reference. Systems of particles; plane motion of rigid bodies. Two-body centrel force problem. Lagrange equations with holonomic and nonholonomic constreints; applicatlons. Prerequisite: adviser's approvel.

AM 852 Advanced Dynamics II
21/20-3
General motions of rigid bodies, Euler's equations, gyroscopic motlons and stability, impulsive motions. Linear oscillations of two-degree and n-degree of freedom systems, matrix formulations, applications. Variational principles including Hemilton's principle and simple applications to optimization. Prerequisite: adviser's approval.

AM 653 Dynamics of Machines $2 v_{z}: 0-3$ Dynamics of systems with one end two degrees of freedom. Energy methods, Rayleigh's quotient. Generalized coordinates, Lagrange's equations. Prerequisite: adviser's approval.

AN 654 Mechanlcal Vibrations
21/2003
Free and forced longitudinal, torslonal and traneverse vibrations. Continuous systems on many supports. Raylelgh-Ritz method. Damped structures. Prerequisite: AM 853.

AN681 Structural Dymamics** $21 / 200: 3$ Theory of vibration of multidegree of freedom systems. Normal mode expressions of undamped and demped systeme. Lagrange's equation. Response of contInuous systerns. Emphasis on methods suitable for anelysis of large complex systerns by digital computer. Prerequisite: adviear's approval. Also llated under CE 625

AM 662 Vibrations of Plates and Sheils* $\quad 212: 0,3$

 Linear theories of plates and shetls with solutions of vibration problems. Free and forced vibrations. Vibrations of layered plates and shells. Nonlinear vibrations of plates and shells. Damping of vibrations of plates and shells; concept of damping parameters. Prerequisites: AM 601 and AM 654 or AM 661 .
AM 663 Matrix Methods in Vibrations* 21/2:0:3

 Matrix methods in dynamics of conservative and nonconservative systems. Matrix iteration, transfer matrix, force and displacement methods for frames and curved structures. Prerequisite: AM 654.
AM664 Dymamic Stability of Structures* $\quad 21 / 2: 0: 3$

Foundations of theory of dynamic stability. Dynamic stability of straight and curved beams, plates and shells. Linear and nonlinear theories. Prerequisite: adviser's approval.
AM 671 Analysla of Machines* $21 / 0: 3$ Classificatlon of mechanlems. Review of planar kinematic analysls. Algebraic and geometric methods for kinematic synthesis. Introduction to spatial linkages. Applications to mechaniem design. Prerequlaite: adviser's approval.

AM 672 Kinematic Symthesis of Mechaniams* 21/:0:3
Kinematic analysis of planar motion. Geometric and algebraic methods in linkage synthesis for path and function generation. Errors in dimensional synthesis. Euler-Savary equation and the cubic of statlonary curvature. Cognate linkages, RobertsChebyshev theorem. Synthesis of spatial linkages. Prerequlslte: adviser's approval.

AM 675 Mechanical Servornechanisme l* 21/2,0:3 Analygis of linear control and feedback systems. Feedback loops, transter functlons and block diagrams. Proportional, rate, integral control. Rootfocus method, Bode and Nyquist plots, stability criteria. Prerequisite: adviser's approval.

AM 876 Mechanical Servomechanlama II* $21 / 2: 0,3$

Compensation techniques. Analog computer simulation of control systems. Analysis of nonlinear systems by use of phase plane and describing functions. Typical components and syeterne. Prerequisite: AM 675.

AM 881 Dynamices of Elastic Sollds*
21\%:0:3
Propagation of stress waves in Infinite and semi-infinite elastic solids. Raylelgh waves. Pochhammer solution for longitudinal stress waves in cylinders. Torslonal stress waves. Effects of rotational inertia and shear in flexural vibrations. Spherlcal stress waves. Prerequisite: AM 604.

AN 682 Aero-and Hydroeiaeticly*
211:0:3
Analysis of problems with nonconservative type forces. Divergence and flutter phenomena, flutter prevention. Applications to vibratlons and instabilities in aerospace, mechanicat and civil engineering. Prerequisite: AM 661.

AM 683 Nonhammonic and Random Vibrations* 21/2,0:3 Determination of factors controlling dynamic errors in shock and vibration; analysis of linear and nonlinear systems. Ritz averaging phase-plane and perturbation methods. Response to periodic and random excitation. Prerequisite: AM 653.

AM684 Analyais of Nonilnear Systems* 21/2:033 Introduction to methods of nonlinear analysis, especially to free and forced nonlinear vlbrations. Phase-plane techniques, perturbation methods, method of harmonic balance and Krylow-Bogoliubov method. Selfexcited oscillations and limit cycles. Liapunov's second method for stablity analysis. Prerequlisite: adviser's approval.

AM 685 Nolee and Acoustics I*
2112.013

Survey of mathernatical methods, random signals, acoustic flelds, room acoustics, subjective criteria, environmental crlteria. Prerequisite: adviser's approval.

AM 688 Noles and Acoustics if*
21/2:0:3
Mechanism of nolse generation by helicopters, fan engines, jets. Nolse characteristics of automobiles, trucks, construction equipment. Estimation of road noise. Problems of subway noise. Techniques of measurement. Environmental Impact. Pre requisite: AM 885.

AM 687 Acountic Radiation from

 Submerged Structures*$21 / 2: 0-3$
Wave equation and elementary solutions. Haimholtz Intagral formulation. Radiation from submerged plates and shells and assoclated sound radiators; scattering of sound by igld and alastic scatterers; creeping waves. Prerequisite: adviser's approval.

AM 691-694 Special Topics: ME and Applied
Mechanks*
each $21 / 2: 0: 3$
Topics of particular current interest in mechanical engineering and applied mechanics. Prerequisite: adviser's approval.

AM 701 Thermodynamics !
 21/2.0:3

Critical study and review of classical thermodynamics. Avaitability functions, general thermodynamic relations, equations of state, general thermodynamic equilibrium criteria. Prerequisite: adviser's approval.

AN 702 Thermodynamics II*
21/20:3
Continuation of AM 701. Application of thermodynamic equilibrium criteria to various problems, including chemical reactions. Prerequisite: AM 701.

AM 703 Combustion*

$21 / 20: 3$
Thermodynamics and chemical kinetics of reacting gases. Calculation of equilibrium and transport properties. Gas dynamics of multiphase flow. Prerequisite: AM 701 or adviser's approval.

AM 704 Abrathermochemistry

21/2:0.3
Fundamentals of chemical thermodynamics, fluid dynamics and chemical kinetics. Applications to combustion and emission phenomena, fluid lasers, plasmas and hypersonics. Prerequisite: AM 701.

AM 709 Special Topics: Themodynamies and Combustion*
 $21 / 2=0.3$
 Topics of particutar curfent interest in thermodynamics and

 combustion. Prerequisite: adviser's approval.
AM 710 Convection
 $21 / 2=0: 3$

Development and applications of laminar hydrodynamic and thermal boundary layer equations for fluid media. Mechanics of turbulence; formuiation and analysis of qurbulent hydrodynamic and thermal boundary fayer equations. Coupied hydrodynamic and thermal appications: naturai convection and film evaporation and condensation. Prerequisite: AM 740 or equivaient.

AM 711 Convective Heat Transfer* $21 / 2,0: 3$
Theory of free and forced convective systems. Equations for heat transfer coefficients in compressible and incompressible ftuids are developed from boundary layer concepts. Applications to internal and external laminar and turbuient flows. Prerequisite: AM 710.

AM712 Conduction Heat Transfer*
$21 / 200,3$
Theoretical development of transient and steady-state temperature distributions in finite and infinite solids. Appropriate mathematicat techniques introduced as required. Solids undergoing phase change and iwo dimensional fields. Prerequisite: AM 203.

AM713 Radiative Heat Transfer* 21/20:3

 Fundamentais of radiative mechanisms of energy transfer. Definitions of basic qualities. Equation of transter, radiative heat flux vector and conservation equations. Properties af surfaces and participating media. Applications to engineering systems. Prerequisite: AM 203.
AM 714 Radiation Gas Dynemics*

21/2:0:3
Conservation equations for gas flows with radiation transport. Significant inviscid and viscous fiows: one-dimensional flows with radiative transport according to various optical properties, laminar tlows with simple transport properties, laminar flows with some complex properties and turbulent diffusive flows. Prerequisite: adviser's approval.

AM 715 Meat Transfer

21/2.0:3
Basic heat transfer mechanisms. Steady and unsteady conduction, including systems with internal heat sources. Internal and external forced and free convection. Radiation between surtaces and in gases. Dimensional and boundary layer considerations. Applications involving fins and heat exchangers. Credit
for AM 715 will not be granted if AM 203 was taken. Prerequisite: advisers approvai.
Also listed under NU 715

AM 716 Reactor Heat Transfer* $\quad 21 / 2: 0: 3$
Heat transfer probiems and solution techniques associated with nuclear reactors including BWR, PWR, LMFBR and HIGR's. Pepresentative core geometries and primary loop components. Fiow boiling phenomena, liquid metal heat transfer, combined convection and radiation gas flow. LOCA and ECCS considerations. Prerequisite: AM 715 or AM 203.
Also listed under NU 716

AM717 High-Performance Heat Exchangers* $\quad 21 / 2.0: 3$ Heat exchanger requirements including need for augmentation. Review of extended surface concepts. Effectiveness-NTU approach. Overall thermodynamic considerations. Basic heat transfer relations for laminar and turbulent internal flows. Selection of exchanger configurations. Regenerators and recuperators. Heat pipes. Prerequisite: AM 203.

AM 718 Multiphase Flows with Heat Transfer* 21/2.0:3 Conservation equations for two-phase flow systems with emphasis on gas-liquid mixtures. Bubbly, slug, annular and tog flow regimes. Pressure drops and heat transfer. Nucleate and film boilling; dropwise and film condensation. Critical heat flux. Prerequisites: AM 701, 710, 740 or adviser's approval.

AM 729 Special Topics: Heat Transfer*
21/2:0.3
Topics of particular current interest in heat transfer. Prerequisite: adviser's approval.

AM 731 Analytical Methods in Thermal

 and Fluld Mechanics*21/20:0:3
Classification of differential equations of fluid and thermai mechanics. Method of characteristics for supersonic flow and wave propagation. Potential methods including complex variable applications for transform techniques for convection and conduction. Prerequisite: adviser's approval.

AM 732 Computational Methods in Thermal and Fluid Mechanles

$21 / 200: 3$
Review of numerical analyses. Finite difference approximations, error and stability analyses, numerical dispersion and damping, matrix inversion methods. Implicit and explcit pro cedures, SOR, ADI, hopscotch and direct solvers for evaluating linear and nonlinear diffusion and convection probiems. Prerequistte: adviser's approval.

AM 740 Princtiples of Fluid Dynamics $21 / 20013$ Conservation laws of mass, momentum and energy. Elements of potential theory end gas dynamics. Application of Inviscid flow to simple internal and external geometries; control volume and differential approach to fluid dynamic problems. Prerequisite: adviser's approval.

AM 741 Compressible Flow*

$21 / 200: 3$
Subsonic, transonic and supersonic flows over twodimenstional and axisymmetric bodies. Shock wave development in both one-dimensional unsteady and two-dimensional steady fiow systems. Internal and external flows are considered. Prerequisite: adviser's approval.

AM 742 Viscous Flow*
$21 / 2=0 ; 3$
Introduction to molecular and macroscopic transport, concepts of stress and strain, and dervation of the Navier-Stokes equations. Application to problens of diffusion, boundary layers and slow motion. Analytic and numerical methods are presented. Prerequisite: adviser's approval.

AM 743 Turbulent Fiow*
21/2:0:3
General theories of turbulence, basic concepts, transition, homogeneous turbulence, analysis of turbulent shear flows, turbulent heat and mass transfer, experimental methods. Prerequisite: adviser's approval.

AH 744 Vlecous Compressible Flow * 21/2:0:3
Effects of compressibility in both subsonic and supersonic flows on boundary layer behavior including heat transfer effects, diffusion; numerical approaches to solving these problems. Quasi-one-dimensional flows in ducts and chennels including effects of viscosity, heat transfer, mass transfer. Prerequisites: AM 741 and AM 742.

AM 745 Hydrodynamics*
21/2:0:3
General theorems of hydrodynamics. Analytical techniques including formulation of boundary conditions. Analysis of hydrofoils, planing, cavitating propeliers and hydrofoils, flow about partially submerged bodies, wave drag, underwater propuistion, cescades, surface impacts, geophysical problems. Prerequisite: adviser's approval.

AN 748 Fuld Dynamics of Rotating Machinery* 21/2:0:3 Methods of analysis of flow in rotating machines. Cascades, performance, radial equilibrium, secondary flows, viscous flows. Supersonic and transonic flows in compressors and furbines. Prerequisite: AM 741.

AM 748 Dynamics of Rarefled Gases* 21/2:0:3
Treatrnent of fundamental gas kinetics and introduction of pertinent physical and mathernatical concepts. Phenomenology and analysis of low-density flows of neutral and ionized gases. Selected applications to flight problerns, heat transfer and vacuurn technology. Prerequisite: adviser's approval.

AH 749 Magnetofluid Dynamics*
21/2:0:3
Dynamics of electrically conducted gases in electric and magnetic fields. Moving fieids and electromagnetic equation: Maxwell stresses, field and momentum-energy tensors. Thermodynamics of fluids in electromagnetic fields. Magnetoffuid dynamics, characteristics, waves, shock waves. Applications: MHO propulsion and power generation. Prerequisite: adviser's approval.

AH 750 Ocean Waves and Thdes*

$21 / 200.3$
Generation, propagation and decay of surface waves and well, internal waves, Aossby waves, seiches, storm surges, tides. Relations between theory and observation. Methods of observation. Prerequisite: adviser's approval.

AM 751 Aerodynamics of Uban Environmert [* $2^{\text {¹/2:0:3 }}$ Aerodynamic forces and pressures on non-aeronautical shapes including vehicles, buildings, other structures. Unsteady forces and dynamic interaction with structures. Motion and thermal characteristics of atmospheric boundary layer. Air flow and thermal characteristics over urban regions and various topographical configurations. Prerequisite: adviser's approval.
Also listed under CE 763
AM 752 Aerodynamics of Ubsn Environment II* $2^{1 / 2}: 0: 3$ Travel and dispersal of atmospheric pollutants. Plume rise and dispersion theories with application to uniform and nonuniform atmospheres. Effects of boundary configurations of various scales: buildings, urban regions, bodies of water, mountains, valleys. Prerequisite: AM 751.
Also listed under CE 764
AM 753-754 Wave Turbulence I, II*
each $21 / 2: 0: 3$
Analysis of inhomogeneous and nonstationary turbulent fields. Kinetic and fluid dynamic descriptions of many particle systems at both quasilinear and nonlinear levels. Wave-particle
and wave-wave instabilities treated as collision processes both classically and quantum theoretically. Determination of selfconsistent kinetic equations for both particles and waves. Applications to space-time evolution of coupled background and turbulent wave fields. Prerequisite: adviser's approval.

Also listed under EL 781-782

AA 755 Experimental Methods in Thermal and

 Fluid Mechanics*21/2:0:3 Measurement principles including mechanical, electrical, electromagnetic, thermal and optical techniques. Application to measurements of forces, pressures, heat transfer, velocity and electron density. Schlieren, interferometry, laser, Raman scattering, etc. Prerequisites: AM 741 and AM 742.

AM 759 Special Toples: Fluid Mechanics* $\quad 21 / 2: 033$ Topics of particular current interest in fluid mechanics. Prerequisite: AM 740.

AM 761 Energy Conversion* 21/2:0:3 Energy resources, modes of energy conversion and principles of energy conversion technology applied to electrical power generation, transportation systems, environmental control and cryogenic systems. Combined cycles and processes and "total energy systems." Environmental considerations. Prerequisite: AM 701.

AM 763 Solar Thermal Engineering I
21/2:0:3
Basic course in the use of solar radiation for heating of buildings, swimming pools, domestic hot water and low tamperature processes. Direct, diffuse and ground-reflected solar radiation, sun angles, active and passive solar heating systems, fundamentals of heat transfer applied to solar thermal engineering, building heat loss, flat plate collector design, construction and thermal efficiency, fluid friction, heat storage design, heat distribution systerns, domestic water heaters, system performance simulations, economics of solar heating. Prerequisite: undergraduate engineering degree.

AM 764 Soler Thermal Engineering II

21/2:0:3 Extension of AM 763 to more advanced solar heating topics plus cooling and dehumidification. Heat transfer and storage in massive walls, double shell houses, Trombe walls, tesidential and commercial greentouses, seasonal solar heating performance estimates. Vapor compression refrigeration cycle, solar assisted heat pump systems, absorption refrigeration cycles, heat engines, solar-driven air conditioners, solar dehumidifiers, concentrating solar collectors, use of reflectors to improve system performance. Prerequisite: undergraduate engineering degree.

AM 765 Energy Conservation and

 Environmental Control*$2^{1 / 2: 0: 3}$ Atmospheric control in enclosuzes. Heat toad requirements, toxicity control, waste disposal, regeneration. Effect of chemical composition in arificial atmospheres on human performance. Energy requirements and alternatives. Prerequisite: adviser's approval.

AM 769 Special Topics: Energy Conversion* 21/2:0:3
Topics of paricular current interest in energy conversion. Prerequisite: adviser's approval.

AM 801 Trajectories and Orbits* $\quad 21 / 2: 0: 3$
Two-body problern, formulas for orbital motion, optimum orbit transfer and rendezvous probłem, interplanetary trajectories. Re-entry trajectories, maximum acceleration and heat transfer, effect of aerodynamic lift. Prerequisite: adviser's approval.

AM 802 Space Mechanics*
21/2:0:3
Treatment of celestial mechanics including n-body problem, 3 -body problern, restricted 3 -body problem. Jacobi integral and
applications, including effects of atmospheric drag, oblateness of the earth, and presence of additional bodies; motion of the moon. Prerequisite: AM 801.

AM 803 Vehicle Dynamics !* $\quad \mathbf{2 t}^{1 / 2: 0: 3}$
Atmospheric flight mechanics of airplanes, quasisteady and dynamic pertormance in various flight regimes, energy methods. Space vehicles, particle motion in central force field, faunch and reentry trajectories. Land and seaborne vehicles: automobile, tracked vehicles, ship and GEM vehicles. Prerequisite: adviser's approval.

AM 804 Vehicle Dynamics IH*

21/2:0:3
Dynamics ot aircraft in symmetric and asymmetric atmospheric flight. Stability and automatic control of launch vehicles. Dynamic stability of high-speed tracked vehicles. Automobile handling characteristics. Stability of seaborne vehicles. Hulls, hydrofoils and GEM vehicles. Prerequisite: AM 803.

AM 806 Physics of the Atmosphere* $\quad 21 / 200: 3$ Origin of solar system, planets, atmospheres. Structures, composition of planetary atmospheres. Minor constituents, natural and manmade, gravitational effects and distribution, escape of gases. Sun and its relationship to earth, planets. Alomic, molecular processes, stratosphere, ozone, winds and dynamics, mesosphere, thermosphere. Prerequisite: graduate status or instructor's permission.
Also listed under EL 683
AM 810 Theory of Propulsion* $21 / 2: 0: 3$ Principles of modern propulsion based on chemical energy sources. Air-breathing engines, combustion thermodynamics, flows with chemical reactions, thermochemistry of solid and liquid rocket engines. Engineering parameters in engine design. Prerequisite: adviser's approval.

AM811 Engine-Airplane Integration*

21/2:0:3
Basic concepts underlying interaction of power plant and airframe flow fields. Air inlet and jet exhaust region design requirements: estimation of net axiat forces. Uses of thrust vectoring for attainment of VISTOL performance and for improved highspeed maneuvering capabitities. Prerequisite: adviser's approval.

AM812 Helicopter Theory*
21/2:0:3
General deveiopment of rotating-wing aircraft. Hovering and vertical flight analysis and performance. Autorotation, blade motion and rotor control. Analysis of forward flight. Rotor blade stall. Stability and vibration problems of helicopters. Prerequisite: adviser's approval.

AM 819 Special Topics: Aeronautics and

 Astronautics*21/2:0:3
Topics of particular current interest in aeronautics and astronautics. Prerequisite: adviser's approval.

AM 901 -904 Guided Readings 1 , Il, III, IV each 3 units Open to qualitied graduate students interested in special advanced topics. Directed study including analytical work andior laboratory investigations. Prerequisite: written permission of department head.

AM 927 Energy Policy lssues $\quad 21 / 200: 3$
See Energy Program for details (ES 927).
AM 928 Energy Resource Distribution and Conversion Technology
$21 / 20: 0$
See Energy Program for detaits (ES 928).
AM 935 Engineering Projects Related to Public Administration
each 3 units
See Cooperative Program with New York University's Graduate School of Public Administration for details.

SEMINAR, PROJECTS, THESIS AND DISSERTATION

AM 971.972 Seminar in Mechanical and Aerospace Engineering

Recent developments through lectures by representatives from industry, research, educational institutions. Discussion from floor. Satisfactory attendance required of master's or engineer students for two semesters; four additional semesters required of Ph.D. students.

AM 996 Profect

each 3 units
Engineering profect pursued with guidance of faculty member. Project title to be submitted in writing to department head and adviser appointed. May be extended to thesis with project adviser's recommendation. Credit only upon completion of profect. Reregistration fee: 3 -unit charge. Prerequisite: degree status.

AM 997 M.S.Thesis

each 3 units
Master's thesis to present results of original investigation in field of student's specialty. Thesis an extension of AM 996, on recommendation of project adviser. Continuous registration required. Maximum of twelve units of AM $996-997$ counted toward degree. Reregistration tee: 3 -unit charge. Prerequisite: AM 896 .

AM998 Engineer Project

each 3 units
Analytical, experimental or design project under guidance of faculty mernber. Oral examination on project and reiated topics required of candidate. Continuous registration required until satisfactory project completed. Minimum of 6, maximum of 12 units counted toward degree. Reregistration fee: 3 -unit charge. Prerequisite: post-master status.

AM Ss9 PtLD. Dissertation

each 3 units
Doctor's dissertation evincing independent study and original contributions in field of specialization. Oral examination on subject of dissertation and related topics required. Minimum of 24 units; also continuous registration at minimum of 3 units per semester required untii dissertation completed. Reregistration fee: 3-unit charge. Prerequisite: degree status.

FACULTY

Richard S. Thorsen, Department Head Mechanical and Aerospace Engineering
B.M.E., CCNY; M.M.E., Ph.D., New York University

Heat transfer, nuclear reactor safety, solar energy
Vito D. Agosta, Professor
B.M.E., Polytechnic Institute of Brooklyn; M.S., University of Michigan; Ph.D., Columbia University Propulsion, heat power, heat transfer

Anthony E. Armenakas, Protessor
B.S., Georgia Institute of Technology; M.S., Itlinois institute of Technology; Ph.D., Columbia University Vibration, dynamic analysis of structures, fracture

William Blesser, Professor
B.M.E., Rensselaer Polytechnic Institute; M.E.E., Polytechnic Institute of Brooklyn
Bioengineering, instrumentation, control systems
Martin H. Bloom, Institute Professor
B.M.E., M.S., Ph.D., Polytechnic Institute of Brooklyn Fluid and thermal studies, aerospace engineering, energy conversion

Robert J. Cresci, Professor and Director of Aerodynamics Laboratories
B.Ae.E., M.Ae.E., Ph.D., Polytechnic Institute of Brooklyn Gas dynamics, heat and mass transter, industrial aerodynamics

John R. Curreri, Professor
B.M.E., M.E.E., Polytechnic Institute of Brooklyn; M.S., Adelphi University
Nonlinear vibrations, stress analysis, earthquake response of structures

Burton Erickson, Professor
B.Ae.E., M.S., Polytechnic institute of Brooklyn

Experimental stress analysis, mechanics
Murray imber, Professor
B.S., University of Alinois; M:S., Eng. Sc.D., Columbia University
Energy conversion, heat transfer, applled mathematics

Joseph Kampner, Professor

B.Ae.E., M.Ae.E., Ph.D., Polytechnic Institute of Brooklyn

Structural analysis, shell theory, structural dynamics
Jerome M. Kiosner, Professor
B.C.E., CCNY; M.S., Columbia University; Ph.D., Polytechnic Institute of Brooklyn
Structural dynamics, fluid-structure interaction, thermal stress analysis

Samuel Lederman, Professor
Dipl.Ing., Technical University of Munic (Germany);
M.E.E., Polytechnic Institute of Brooklyn

Wind and shock tunnel testing, diagnostics of fluids, microwaves, spectroscopy, lasers, plasma

Mortis Morduchow, Professor
B.A., Brooklyn College; B.Ae.E., M.Ae.E., D.Ae,E., Polytechnic Institute of Brooklyn
Fluid dynamics, solid dynamics, numerical analysis
Gino Morettl, Professor
Ph.D., University of Turin (Italy)
Fluid mechanics, numerical techniques
Wheeler K. Mualer, Jr., Protessor
B.S., Iowa State College; M.S., Ph.D., University of ilininois
Heat transfer, thermodynamics, and energy conversion
Sebastian V. Nardo, Professor and Administrative Officer, Farmingdale
B.M.E., M.Ae.E., Ph.D., Polytechnic Instifute of Brooklyn

Structural mechanics, dynamics, solar energy
Huo-Hal Pan, Professor
B.S., National Southwest Associated University
(China); M.S., Texas A\&M; M.S., Kansas State University; Ph.D., University of Callfornia (Berkeley) Solid mechanics, rational design, applied mathematics

Sharad A. Patel, Professor

B.Sc., Banares Hindu University (India); M.Ae.E., Ph.D., Polytechnic Institute of Brooklyn
Solid mechanics, creep, structural analysis

Frank J. Romano, Professor and Administrative Officer, Brooklyn
B.M.E., M.S., Ph.D., Polytechnic Institute of Brooktyn Solid mechanics, structures, shell theory, thermodynamics

Pasquale M. Sforza, Professor
B.Ae.E., M.S., Ph.D., Polytechnic institute of Brookiyn Theoretical and experimental fluid dynamics, thuid power engineering

Bemard W. Shaffer, Professor
B.M.E., CCNY; M.S., Case Institute of Technology; Ph.D., Brown University
Rational design, elasticity and plastic stress analysis

Simon Slutsky, Professor
B.C.E., CCNY; M.S., Columbia University; Ph.D., Polytechnic Institute of Brookiyn
Urban noise, engine noise, vibrations of systems
Gordon H. Strom, Professor
B.Ae.E., M.S., Ph.D., University of Minnesota Applied aerodynamics, subsonic wind tunnels, atmospheric pollution

Willam P. Vafakos, Professor
B.M.E., M.M.E., Ph.D., Polytechnic Institute of

Brooklyn; J.D., Brooklyn Law School
Solid mechanics, structures
Phillp Abrami, Associate Professor
B.M.E., M.S., Polytechnic Institute of Brooklyn

Mechanical analysis and design, sport product engineering

Philip Chaikin, Associate Professor
B.S., CCNY; B.M.E., New York University

Graphics, computer programming

Robert Corry, Associate Professor
A.B., Columbia College; B.S., M.S., Ph.D.,

Columbia University
Applied instrumentation, servomechanisms
Jesse F. Crump, Associate Professor
B.S., M.D., University of Nebraska

Physiology, bioengineering, medical instrumentation
Bemard Grossman, Associate Professor
B.S., Ac.E., M.S., Ph.D., Polytechnic Institute of Brooklyn

Computational fluid mechanics, aerodynamics
Morrls P. Isom, Associate Professor
A.B., Harvard University; M.S., Massachusetts Institute
of Technology; Ph.D., Princeton University
Acoustics, gas dynamics, applied mathematics
August R. Krenkel, Associate Professor
B.S., M.S., Massachusetts institute of Technology Atmospheric flight dynamics, applied aerodynamics, aircraft design

Jack E. Wemer, Associate Professor
B.S., M.S., Massachusetts Institute of Technology; Ph.D., The Johns Hopkins University Low-speed aerodynamics, shock waves, fluid mechanics

Barry M. Wolf, Associate Professor
B.M.E., Cooper Union; M.S., University of Pennsylvania; Eng. Sc.D., Columbia University Vibrations, stress analysis, biomechanics

ADJUNCT FACULTY

Jack Como, Adjunct Professor
B.M.E., M.E.E., New York University,
M.B.A., Adelphi University

Vibrations, systems analysis
Mansuk Lee, Industry Professor
B.S., M.S., Massachusetts Institute of Technology;
M.E., Columbia University

Computer graphics
Irving Ojaivo, Adjunct Professor
B.M.E., CCNY; S.M., Massachusetts institute of

Technology; ScD., New York University
Applied mechanics, numerical methods
Clifford Wojan, Adjunct Professor
B.M.E., M.M.E., Poiytechnic Institute of Brooklyn;
M.1.E., New York University

Thermodynamics, energy conversion
Tio C. Chen, Adjunct Associate Professor
B.S., National Taiwan University (Taiwan); M.S., University of Kansas; Sc.D., Columbia University Energy conversion, environmental impact

Beauyais Fox, Adjunct Assistant Professor
B.S., Lehigh University

Graphics, engineering economics'
Je Chul Kim, Adjunct Associate Professor B.S., Masachusetts Institute of Technology; M.S., Northeastern University; Ph.D., Purdue University Thermodynamics, heat transfer

Edward Pinnes, Adjunct Associate Professor
B.M.E., M.S., New York University; Ph.D., Polytechnic institute of New York
Thermodynamics, heat transfer
Donald J. Render, Adjunct Associate Professor
B.S., University of Itlinois; M.S., Massachusetts Institute
of Technology; Ph.D., New York University
Fluid mechanics, heat transfer
Arthur Rubel, Adjunct Associate Professor
B.M.E., CCNY; M.M.E., Ph.D., New York University

Fluid dynamics, numerical analysis
Robert DiMarco, Adjunct Lecturer
B.S.Ae.E., Polytechnic Institute of Brooklyn; M.S., Long

Island University
Computer graphics
Richard LaRosa, Adjunct Lecturer
B.E.E., M.S., D.E.E., Polytechnic Institute of Brookiyn

Solar energy
Michael London, Adjunct Lecturer
B.S., M.S., Ph.D., New York University

Flight mechanics, stability and control
Anil Padhye, Adjunct Lecturer
B.S., Indian Institute of Technology (Bombay); M.S.,

Polytechnic Institute of New York
Thermodynamics, laboratories
Bernard Roth, Adjunct Lecturer
B.M.E., M.S., CCNY

Graphics, mechanics
John Sposito, Adjunct Lecturer
B.S.Ae.E., M.S., Polytechnic Institute of Brooklyn

Aircraft design, mechanics
Steven Vitale, Adjunct Lecturer
B.M.E., M.M.E., M.C.E., Polytechnic Instifute of New York

Fluid mechanics, heat transfer

METALLURGY: PHYSICAL AND ENGINEERING

Human civilization dawned with the transition from the stone to the iron age. Ever since, metallic materials have been the pacesetters of our technological advancement. Metallurgists are specialists in the most effective utilization of metals and alloys. They are vital to the solution of problems arising from the intensive quest for superior materials in our rapidly advancing technological age. During the last two decades, we have witnessed an increasing demand for such familiar materials as high-strength steels, aluminum, magnesium and copper alloys, and the utilization of some less common metais such as titanium, beryllium and molybdenum. Yet we have utilized only a fraction of the theoretical potentials of metallic materials. Thus a challenge remains for imaginative individuals to probe, understand and use metallic materials in fields ranging from electronic devices, to new energy production processes, to chemical production and space environment. The broad field of metallurgy may be divided into several areas of specialization. The most important of these are physical and engineering metallurgy, which are emphasized at Polytechnic.

Physical Metallurgy

Physical metallurgy is concerned with the study and understanding of fundamental properties of materials and how these properties are related to the macroscopic behavior of metals and alloys. Chemical composition, atomic bonding, crystal structure and microscopic imperfections are correlated with the strength and other physical and chemical properties of metals and alloys. Because the same basic concepts, relating microstructures to physical properties, also apply to other classes of solids, metallurgists often find themselves involved with many nonmetallic materials such as ceramics and glasses, semiconductors, ionic solids and even polymers.

Engineering Metallurgy

In engineering metallurgy, attention is focused directly on the engineering application of metallic materials. Metallurgical engineers play a vital role in materials selection and process optimization. They have a thorough knowledge of existing metallic materials, their properties and limitations. Borrowing fundamental knowledge from physical metallurgy, they are constantly in search of a new and better material to improve a process or a product. Some of the areas in
which a metallurgical engineer works are prevention of corrosion and environmental degradation, welding, brazing and joining of metals and alloys, failure analysis and product reliability and safety, quality control, materials characterization, and alloy development.

Metallurgists may work in research and development, plant operations or consulting. Further, metallurgists contribute to the progress in oceanography, modical prosthe'ics, dental materials, environmental protection and electronic devices.

Programs of study in this department lead to the degrees of bachelor of science, master of science and engineer in metallurgical engineering and to the degree of doctor of philosophy in physical metallurgy, materials science and metallurgical engineering and materiais science. The undergraduate program is accredited by the Accreditation Board of Engineering and Technology.

UNDERGRADUATE PROGRAM

The program of full-time day study is designed to establish a firm basis from which the graduate may proceed along any avenue of professional development from graduate study and research to industrial assignments. Scientific understanding and utilization of basic concepts-rather than dependence on purely factual knowledge-are the department's aim, providing the capability to solve present problems and the ability to keep pace with the technological advancements and increasingly complex problems of the future.

Specifically, the curriculum consists of 33 credits in mathematics, physics and chemistry, 24 credits in the humanities and social sciences, 60 credits in engineering sciences, material sciences, engineering design and systems, 9 credits of technical electives, $3^{\prime \prime}$ credits of free electives and 7 credits of thesis.

Students will have an opportunity to select physical metallurgy or metallurgical engineering technical electives. The materials science oriented student may choose the former program, while the student interested in the industrial aspects of materials may select the latter. The technical elective structure also
allows students to branch out into interdisciplinary fields by taking courses in bioengineering, polymeric materials, physics or chemistry.

Humanities and social science requirements for all engineering students are given on page 23.

The freshman and sophomore years of the metatiurgical engineering curriculum may be taken at the Farmingdate campus. The junior and senior metallurgy courses are only offered on the Brooklyn campus. Any of the non-metallurgy courses listed in the last two years may also be taken at the Farmingdale campus provided they are offered.

Typical Course of Study for the Bachelor of Science Degree in Metallurgy

Freshman Year

First Semester		Hours/Week		
No.	Subject	Cl.	Lab.	Cr.
CM 101	General Chemistry 1	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab I	0	$11 / 2$	$1 / 2$
HU 101	Coltege Composition	3	0	3
SS 104	Contemp. World Hist.	3	0	3
MA 101	Calculus 1	4	0	4
PH 101	Intro. Physics I	3	0	3
PE 101	Physical Education	0	2	0
				16

Second Semester Hours/Weel				
No.	Subject	Cl.	Lab.	Cl
CM 102	General Chemistry II	$21 / 2$	0	21/2
CM 112	General Chemistry Lab II	0	$11 / 2$	1/2
HU 200	Intro. to Literature	3	0	3
MA 102	Catcutus It	4	0	4
PH 102	Intro. Physics if	$3{ }^{1 / 2}$	$11 / 2$	4
CS 111	Intro. to Computers	3	0	3
PE 102	Physical Education	0	2	0

Sophomore Year

AM 115 Eng. Mechanics
AM 101 Graphics
PH 103 Intro. Physics 1 II
MA 103 Calculus IIt
PE 103 Physical Education Humi/Soc. Sci. elective

4	0	4
1	3	2
$2^{1 / 2}$	$11 / 2$	3
3	0	3
0	2	0
3	0	3
		15

EE 370 Princ. Elec. Eng.
EE 374 Inst. Lab.
AM 121 Mechs. of Materials
MA 104 Appl. Ord. Diff. Eqs.
PE 104 Physical Education Hum./Soc. Sci. elective Elective*

3	0	3
0	3	1
3	0	3
3	0	3
0	2	0
3	0	3
3	0	3

Junior Year

MT 402	Mechan. Metalifurgy I	3	3	4		CM 161	Physical Chernistry I	3	0	3
MT 401	Physical Metailurgy	3	0	3		MT 403	Physical Metailurgy II	3	0	3
MT 404	Metaliography Lab.	0	6	2		MT 406	Mechanical Metatiurgy It	3	0	3
MT 405	Metallurgical					MT 407	Metallurgy Transport	3	0	3
	Thermodynamics	3	0	3		MT 408	Phys. Metatlurgy Lab.	0	6	2
	Hurn./Soc. Sci. elective	3	0	3		MT 495	Thesis	0	3	1
	Elective*	3	0	3	,		Hum./Soc. Sci. elective	3	0	3
				18						18

Senior Year

MT 421	Metal. Failure Anal.	1	6	3	MT 411	Fabrication Technology	3	0	3
MT 416	Electrometal. \& Corrosion	3	0	3	MT 413	Process Metaliurgy	3	0	3
MT 412	X-Ray Diffraction	2	3	3	MT 423	Cerana. \& Refrac. Mat.	3	0	3
MT 410	Solid-State Metallurgy	3	0	3	MT 497	Thesis	0	9	3
MT 496	Thesis	0	9	3		Humisoc. Sci. elective	3	0	3
	Elective			$\underline{3}$		Elective*	3	0	$\frac{3}{4}$

[^16]
GRADUATE STUDY

The Department of Physical and Engineering Metallurgy prepares students for the degrees of master of science and engineer in metallurgical engineering and doctor of philosophy in physical metallurgy, in materials science and in metalfurgical engineering and materials science. The courses of study and research leading to these degrees are designed for students holding baccalaureata degrees in metallurgical engineering but are open to those holding baccalaureate degrees in related disciplines if undergraduate deficiencies are removed.

Both fundamental and applied research are carried on within the department. Excellent facilities are available for work in electron microscopy, X-ray diffraction, deformation and fracture and other fields. Fundamental research is being carried out on alloy hardening, deformation and fracture, phase transformations, thermomechanical working and other topics. In applied research, the department is involved in studies of metallurgical materials for medical and dental applications, electronic applications and energy-related applications. The rules governing admittance to graduate studies are applicable to all students.

REQUIREMENTS FOR THE MASTER'S DEGREE

No.	d Subjects	Units
MT 760-761	Seminar (attendance required two semesters)	3
MT 996	Project (part-time students only)	6
Nine units from the following:		
MT 600	Structure-Property	
	Relationships in Materiats	3
MT 610	Thermodynamics of Metals and Alloys	3
MT 620	Plastic Deformation and Fracture	3
MT 630	Theory of Metals	3
MT 640	Reactions in Solids	3
MT 650	Advanced Engineering Metallurgy	3
Selected electives in science, mathematics, economics or engineering, in consultation with department adviser up to or MT 997 Thesis		18
		12
	Total	36

In order to be admitted to the master's program, an applicant must have the equivalent of a bachelor's degree in metallurgy or materials science. An applicant with a bacheror's degree in a fjeld of science or engineering other than metallurgy or materials science may have to remove some undergraduate deficiencies as determined by the department adviser.

A graduate student enrolled in the master's program may elect to do a six-unit project, a 12 unit thesis, or under special circumstances take a series of recommended courses and pass an oral examination. A total of 36 units is required for the degree.

Part-time students enrolled for the M.S. degree in metallurgical engineering may elect to take the following groups of courses which emphasize engineering metallurgy.

Required Subjects: Units
Take nine units from:
MT600 Structure-Property Relationships 3
MT610 Thermodynamics of Metals and Alloys 3
MT620 .Plastic Deformation and Fracture 3
MT630 Theory of Metals 3
MT640 Reactions in Solids . 3
MT650 Advanced Engineering MetalIurgy 3

Metallurgy Department Electives

Take 15 to 18 units from:
MT 700 Welding Engineering 3
MT 705 Semiconductor Technology 3
MT715 Corrosion \& Oxidation 3
MT621 Special Topics: Fracture Mechanics 3
MT651 Special Topics: Non-Destructive Testing
MT 726 . Nuclear Reactor Materials 3
MT 710 Powder Metallurgy 3

Engineering \& Science Electives

Take 6 to 9 units from:
1E611 Statistical Quality Controi 3
OR 608 Statistics 3
MA 561 Probability 3
MG 600 Management Process 3
MG 601 Organizational Behavior 3
IE 685 Reliability 3
Project
Take 3 to 6 units
MT 996 Project
$-\frac{3 t 06}{36}$

REQUIREMENTS FOR THE ENGINEER DEGREE

Applicants for admission to this program must hold a master's degree (or equivalent) comparable in content to that of the department. This must inciude at least the equivalent of the required courses in the MT 600-650 series listed under the requirements for the master's degree. Applicants holding master's degrees for which the requirements vary substantially from those indicated above may be admitted to the engineer program if the deficiencies, as evaluated by the departmental graduate adviser, are removed during the time that the student is enrolled in the program.

No. Required Subjects Units
MT 621-622
Special Topics in Plastic Deformation and Fracture Special Topics in Advanced Engineering Metallurgy
Seminar-presented by the student, critically reviewing a technical paper selected by the student with the approval of a faculty adviser

Metallurgy

Selected electives in science, mathematics, economics, or engineering, in consultation with department adviser, up to
or
MT998 Project
Total

REQUIREMENTS FOR THE DOCTOR'S DEGREE

The requirements for the doctor's degree conform to the regulations stated in this catalog under "Doctor's Degree." Specific doctoral requirements are available from the departmental secretary in the publication Guide for Doctoral Students in Metallurgy.

A typical program consists of 30 units in the major field of physical metallurgy, a minor field in X-ray crystallography, a minor field in chemical physics, chemistry, theoretical mechanics, or other acceptable disciplines and 36 units of research for the doctoral dissertation.

UNDERGRADUATE COURSES

REQUIRED

MT 401 Physical Metallurgy I
3:0:3
Introduction to physical metallurgy. Relation of properies to microstructure in pure metals. Recovery, recrystallization and grain growth. Phase diagrams. Solidification. Iron-carbon alloy system. Ferrous alloys. Prerequisites: PH 103, PH 102 and CM 112.

MT 402 Mechanical Metallurgy I 3:3:4
Behavior of metallic materials under stress. Mechanical properties in tension, compression, direct shear, torsion, flexure. True stress-strain. Cold work, hardness, impact, fatigue properties. Effect of temperature on mechanical behavior of metals. Creep. Stress rupture. Prerequisite: MA 103.
MT 403 Physical Metaliurgy II
3:0:3
Nonterrous alloys. Diffusion-controlled phase transformations. Distortion-controlled phase transformations. Elementary alloy theory. Prerequisite: MT 401.

MT 404 Metallography Laboratory - 0:6:2 Metallographic preparation of samples, mounting, polishing etching. Electropolishing and etching of ferrous and nonferrous alloys. Macroetching and sulphur prints. Temperature measurement: thermocouple and pyrometry. Photomicrography and photographic techniques. Replica electron microscopy. Sample preparation techniques for electron microscopy. Prerequisite: MT 401 and MT 403.

MT 405 Metallurgical Thermodynamics
3:0:3
Laws of thermodynamics. Free energy of heterogeneous reactions. Gibb's phase rule. Solutions. Quasichemical theory of solutions. Thermodynamics of surfaces and interfaces. Thermodynamics of defects. Prerequisite: MT 401.
MT 406 Mechenical Metellurgy II
3:0:3
Mechanism of slip, slip systerns, critical resolved shear stress, mechanical twinning. Deformation in polycrystailine materials. Impurity effects and yield point phenomena. Elements of dislocation theory. Dislocation reactions, multiplication, movement under force. Dislocation interaction with impurities and point defects. Prerequisite: MT 402.
MT 407 Trensport Methods in Matallurgy 3:0:3
Methods of engineering analysis applied to metallurgical systems. Simultaneous development of mass, momentum and
energy transport concepts from both macroscopic and microscopic points of view. Determination of transport coefficients from kinetic theory. Introduction to irreversible thermodynamics. Prerequisites: MA 104 and PH 103.

MT 408 Physical Matallurgy Laboratory

0:6:2
Experiments to illustrate principies of physical metaliurgy, including phase equilibria, recrystallization, solid-solution and precipitation hardening. Heat treatment of steel. Structure properly relationships. Prerequisite: MT 403.

MT 410 Solid-State Metallurgy

3:0:3
Free electron theory of metals. Band and zone theory. Bonding in solids. Thermal, electrical and magnetic properties of metals and alloys. Effects of metallurgical variables. Metallurgical aspects of semiconductor and superconductor phenomena. Prerequisite: MA 104.

MT 411 Fabrication Technology
3:0:3
Metallurgical principles of metal fabrication. Forging, rolling, extrusion and wire drawing. Hot and cold forging. Fabrication defects. Elasticity and plasticity theory applied to metal fabrication. Elements of solidification and metal casting. Prerequisites: MT 403 and MT 406.

MT 412 X-Ray Diffraction

23:3
Production and properties of x-rays. Elements of crystallography. Stereographic projection. Powder and single crystal diffraction techniques. Structure and crystal orientation. Stress analysis and phase diagram determination by x-ray techniques. Qualitative and quantitative chemical analysis by x-ray techniques. Prerequisites: MA 104 and PH 103.
Also listed under PH 372
MT 413 Process Metallurgy
3:0:3
Metallurgy of iron, steel and principal nonferrous metals. Gases in steel. Reduction and oxidation, slag-metal reaction. Kinetics of heterogeneous reactions. Material and energy balances. Pyerequisite: MT 405.

MT 421 WetaHlurgical Failure Analysis

1:6:3
integrated knowledge of metallurgical principles applied to analysis of in-service fallures of materials. Discussion of actual case histories. Laboratory assignments require students to prepare written reports and give oral presentations analyzing six in-service failures. Prerequisites: MT 404 and MT 408.

MT 423 Introduction to Ceramic Refractory Materials 3:0:3 Mineral raw materials. Forming and thermal treatment to obtain ceramic products. Glasses, glazes and enamets on metals. Introduction to physical ceramics. Equilibria and reactions between ceramics. Recrystallization, grain growth and microstructure of ceramics. Plastic and viscous deformation in ceramics. Physical properties of ceramics.

MT 495-497 Bachelor's Thesis in Metallurgical Engineering
 MT 4951 credit
 MT 496-497 each 3 credits

Technological requirements for and applications of ferromagnetic materials. Ferromagnetic domains. Properties of ferromagnetic single crystals. Metaliurgical factors affecting ferromagnetic properties. Ifon-silicon, iron-nickel and other alloys. Permanent magnet materials. Prerequisite: MT 410 or equivalent.

TECHNICAL ELECTIVE COURSES

 and organization for materials selection. Elementary statisticsapplied to specifications, quality standards, quality control. Prerequisite: MT 403.

MT 414 Metailurgleal Kinetics

3:0:3
Statistical and empirical approaches to kinetics. Diffusion in metals and alloys. Theory of nucleation and growth. Kinetics of recrystalization, precipization, martensittc transformation. Pre requisite: MT 405.

AT 415 Metallurgy of Magnette Materials
3:0:3
Macroscopic concepts of magnetism. Magnetization curve. Technological requirements for and applications of ferromagnetic materials. Ferromagnetic domains. Properties of ferromagnetic single crystals. Metallurgical tactors affecting ferromagnetic properties. Iron-silicon, iron-nickel and other alloys. Permanent magnet materials. Prerequisite: MT 410 or equivalent.

MT 416 Electrometallurgy and Corrosion
3:0:3
Fundamental principles of electrometallurgical processes. Electrode potential and over-voltage. Electrode kinetics. Electroplating. Corrosion and stress corrosion. Corrosion protection. Prerequisite: MT 403.

MT 417 Welding Metallurgy

3:0:3
Metallurgical aspects of welding. Theory and applications of arc, gas, resistance and Thermit welding processes. Modern methods of procedure, control, tests, inspection. Examinations of micro- and macro-structure of welds and adjacent areas. Applications of weiding. Weldability criteria. Prerequisite: MT 401 or equivalent.

MT 418 Powder Metallurgy
3:0:3
Chazacteristics of metal powders. Basic principles of compacting. Porous and dense products. Microstructures. Factors affecting physical and mechanical properties of powder blending, compacting, sintering. Prerequisite: MT 401.

MT 419 Strengthening Mechanisms in Metal 3:0:3 Theory of alloy strengthening. Role of solute distribution on dislocation movement in binary and complex alloys. Muitiphase aggregate strengthening. Composite materials and unidirectionalky solidified eutectics. Thermomechanical processing and strength. High temperature effects. Prerequisites: MT 403 and MT 406.

INTERDEPARTMENTAL COURSES

MT 301 Mechanical Behavior of Materials
 2:3:3

Structure-property relationships of engineering materials. Testing methods and interpretation of tests on mechantcal properties of materials. Engineering properties of ferrous and nonferrous alloys. Laboratory experiments on properties, microstructure, fractography. Interdepartmental course for mechantcal engineering students.

MT 302 Metaliurgy for Engineers
$20: 2$
introduction to atomic, microscopic and macroscopic structure of engineering materials. Effect of grain size and boundaries, work hardening and heat treatment on behavior of solids. Discussion of inelastic behavior, creep, fatigue, brittle and ductile fracture of metals. For aerospace engineering students.

MT 303 Nature and Properties of

Structural Materlats
1:3:2
Physical and mechanical properties of concrete, metals, plastics and asphaltic materials related to structure. Experimental investigation of mechanical properties of select structural materials and physical properties of cement and concrete mixes. Jointiy developed and taught by civil and metallurgical engineering departments.

MT 304 Materials Science
2:3:3
Plastic behavior of single and polycrystalline materials. Deformation mechanisms. Effect of temperature and deformation on rate of plastic flow. Strain hardening. Dislocation theory. Fracture mechanics, toughness and crack propagation theories. Technical elective for aerospace, civil and mechanical engineering students. Prerequisite: MT 301 or MT 302 or MT 303 or consent of instructor.

MT 375 Semiconductor Technology
3:0:3
Principal techniques involved in processing and fabrication of semiconductor devices and integrated circuits, including material preparation, junction forming, circuit integration, packaging. Prerequisite: EE 111 or MT 410 or equivalent.
Also listed under EE 119

MT 399 Senjor Honors Work in Metallurgieal Engineering

credit to be arranged
Independent work undertaken by qualified honors students in metallurgical engineering. Course material arranged by faculty steering committee.

MT 420 Engheering Materials 3.0 .3

Structure, properties and uses of polymers and metals as engineering materials. Crystal structure, defects, heat treatment, corrosion and its prevention. Manufacture and processing of polymers. Mechanical behavior of polymers and their thermal
, and electrical properties. Prerequisites: CM 161, CM 162, CM 123 and CM 124.
Also listed under $\mathbf{C H} 271$

GRADUATE COURSES

HT 600 Structure-Property Relationships in Material
 21/2:0:3

Dependence of properties, e.g., mechanical and electrical, on structure of material. Crystalline vs. amorphous structure, occurrence and rofe of defects. Bonding and structure. Anisotrophy of properties related to crystal symmetry. Polycrystal vs. single crystal vs. textured polycrystals. Prerequisite: MT 410 or equivalent.

MT 601-602 Special Topies in Structure-Properly

Relationships 1, II*
each $21 / 2.0: 3$
Advanced or specialized topics in structure-property relationships in materials presented at irregular intervals. Prerequisite: MT 600.

MT 603 Introduction to Electron Microscopy $\quad 21 / 2: 0: 3$ Nature and use of electron microscope; theory of electron ditfraction, including indexing of diffraction patterns. Kinematical theory of electron diffraction. Imaging of precipitates and Burger's vector determinations. Use of Kikuchi patterns in quantitative electron miscroscopy. Prerequisite: MT 600.

MT 610. Thermodynamics of Metals and Alloys

21/2:0:3
Review of fundamentals of classical and statistical thermodynamics with emphasis on solid state, phenomenology of metallic surface, phase equitibria in multicomponent metallic systems, calculations of phase diagrams, thermodynamics of lattice defects and substructure. Prerequisite: MT 405.
$\begin{array}{ll}\text { MT } 611-612 & \begin{array}{l}\text { Special Topies in Thermodynamics } \\ \text { and Statisisical Mechanics of } \\ \text { Metalt } 1,1 I^{*}\end{array} \text { each } 21 / 2: 0: 3\end{array}$
Advanced or specialized topics in thermodynamics and statistical mechanics of metals. Prerequisite: MT 610.

MT 620 Plastic Deformation and Fracture
21/2:0:3
Review of elasticity theory. Dislocation concepts of mechanical
behavior of metals. Theories of plastic flow, work hardening, strength, ductility. Movement of disiocations in metals. PeierlsNabarro stress. Theories of yielding, brittle and ductile fracture and alloy hardening. Prerequisite: MT 406.

MT 621-622 Special Topics in Detormation and Fracture $1, \mathrm{H}^{*}$
 each $2^{1 / 2}: 0: 3$

Advanced or speciatized topics in deformation and fracture. Prerequisite: MT 620.

MT 830 Theory of Metals
$2^{1 / 200: 3}$
Quantum theory as applied to metals and alloys, theorles of thermal properties of metals, theory of alloy phases, theories of electrical conductivity and magnetic properties of metals, influence of structural imperfections on properties of metais and alloys. Prerequisite: MT 410 or equivalent.

MT 631-632 Special Topics in Theory of

each $21 / 2: 0: 3$
Advanced or specialized topics in theory of metais. Prerequisite: MT 630 .

MT 640 Reactions in Solids
$2^{1 / 2}: 0: 3$
Study of mechanisms and kinetics of diffusion-controlied and diffusiontess phase transformations in solid metallic systems; diffusion in multiphase, multicomponent metalic systems; theories of precipitation, of grain boundary migration and grain growth, of eutectoid transformations and of martensitic transformation. Prerequisite: MT 414.

MT 641-842 Special Topics in Reactions in

 Solids l, H^{*}each $21 / 200: 3$
Advanced or specialized topics in reactions in solids. Prerequisite: MT 640 or instructor's consent.

MT 650 Advanced Engineering Metallurgy - 21/2:0:3
Requirements for resistance to stress, oxidation and corrosion, and to structural instability in metals and alloys for low-normal- and high-temperature service, theories of high-temperature deformation and fracture, of alloy design and design of alloys for challenging environments. Prerequisite: MT 405.

MT 651-652 Special Topics in Advanced Engineering Metallurgy $1,11{ }^{*}$. each $21 / 2: 003$

 Advanced or specialized topics in advanced engineering metallurgy presented at regular intervals. Prerequisite: MT 405.
MT 700 Welding Metallurgy

21/2:0.3
Analysis of process variables affecting joining techniques. Study of arc characteristics, heat fiow, gas-metal interactions, solidification mechanics, residual stress effects, distortion control. Application of solid-phase bonding, electron and laser welding. Weldability criteria for ferrous and nonferrous alloys. Prerequisite: instructor's consent.

MT 705 Semiconductor Technology

21/2.0:3
Review of electrical transport properties of semiconductors. Preparation of semiconductor materials. Impurity diffusion, diffusion mechanisms, concentration profiles and their measurement, diffusion procedures used for silicon, germaniurn and compound semiconductors. Surface preparation and contacts. Integrated circuits, design of circuit components, techniques used in fabrication, various limitations on performance. PrereqLisite: graduate status.

Aso listed under EL 644

MT 706 Magnetism and Magnetic Materiais* 2 $1 / 2: 0: 3$
Origin of magnetism in atoms and solids. Diamagnetic vs. paramagnetic behavior. Ferromagnetic domain theory. Antiferromagnetism and ferrimagnetism. Structure and properties of magnetic materials. Prerequisite: MT 410.

MT 707 Thin Film Technology
21/2:0:3
Preparation, structure, evaluation and properties of thin films: metallic, semiconductor and dielectric fitm techniques, nucleation and growth considerations, epitaxy, and metastable configurations. Prerequisite: instructor's consent.

MT710 Powder Metallurgy . 21/2:0:3
Fundamental treatment of powder metallurgy covering theoretical and practical aspects of subject. Production of metal parts from powder, review of commercial applications. Theories of metal synthesis, compacting, consolidation and sintering. Imporant patents and commercial processes. Colloquium. Prerequisite: instructor's consent.

MT 715 Corrosion and Oxidation Mechanisms

 in Metals$21 / 200.3$
Electrochemical principles applied to corrosion. Analysis of corrosion mechanisms. Study of preventive methods. Effects of temporature, environmental and metallurgical factors. Hightemperature oxidation and metal-gas interactions. Testing. Analysis of use of cathodic protection, water treatment, cathodic and anodic coatings. Prerequisite: MT 405 or instructor's consent.

MT 725 Noble Metal Metallurgy
21/20:3
Crystal structure and phase equilibria for noble metal alloy systems. Mechanical, electrical, magnetic and optical properties for various alloy systems. Criteria for corrosion and tarnish resistance. Fabrication, joining and application of noble metal alloys. Prerequisite: instructor's consent.

MT 726 Metallurgy of Nuciear Reactor Materlals

21/2:0:3
Study of material requirements for basic parts of nuclear reactors. Metallurgy of fuels, moderator, control and construction materials. Description of handling and fabricating teohniques. Prerequisite: instructor's consent.
Also listed under NU 726
MT 727 Bicengineering Metallurgy** $21 / 2: 003$ Selection and application of metals and alloys for use in body environment. The body as corfosive environment. Examination of major problem areas. Principles and techniques for preparation of dental amalgams and other alloys. Design of alloys for bioengineering applications. Prerequisite: instructor's consent. Also listed under BE 741

MT 740 \dagger Survey of Metallurgical Principles* \quad 21/2:0:3 Survey of metallurgical principles. Crystal structure, atloying, phase diagrams, diffusion phenomena, mechanical deformation of metals and alloys, recrystallization, age hardening. Prerequisite: instructor's consent.

MT 780-761 Seminar in Metallurgical

 Engineeringeach $0.2^{1 / 2}: 1^{1 / 2}$
Recent progress in field of metallurgical engineering given in lectures by engineer's from industry, research and educational institutions. One or more seminar topics from cuirrent literature in metallurgical field assigned each student for presentation. Students taking course expected to read in each of assigned topics so as to beconversant with topic presented. (Attendance required for two semesters. Part-time students may substitute a three-unit metallurgy course.)

MT 762 Seminar in Metallurgical Engineering $\quad 0.2^{1 / 2}: 0$
Preparation and presentation by student of seminar on some topic of metallurgical engineering, in which student critically reviews technical paper selected by student with approval of faculty adviser. For students enrolled in engineer in metaklurgical engineering degree program.

MT 763-764 Seminar in Metallurgy and

Materials Science each $0: 2 \frac{1}{2}: 0$ Preparation and presentation by student of seminar on some topic of physical metallurgy, metallurgical engineering, or materials science in which student critically reviews technital paper selected by student with approval of faculty adviser. For students enroiled in doctoral pragram.

NTT 927 Energy Policy Issues
$21 / 2: 0: 3$
See Energy Program for details.
MT 928 Energy Pesource Distribution and Conversion Technology

21/2:0:3
See Energy Program for details.
MT 835 Englneering Projects Related to Public Adminiatration
each 3 units
See Cooperative Program with New York University's Graduate School of Public Administration for details.

MT QSS
$\begin{aligned} & \text { Report Project for the Degree of } \\ & \text { Master of Sclence }\end{aligned}$
$3-6$ units Independent project demonstrating professional maturtiy and graduete-level knowledge completed under guidence of depertmental adviser. Report includes critical analysis and interpretetion of pertinent literature and should represent worthwhile contribution to the fieid. Oral final examination and project report required.

MT 997 Thesis for the Degree of
Master of Sclence
3-12 unlts
Extension of project study to thesis level with approval of division head. Regular conference and reports during thesis investigation required.

MT 988 Project for the Englneer Degree 3-6 unlis Engineering project at post-master's level pursued with guidance of faculty member. Candidate required to take oral examination on subject matter of project and on related topics.

MT 998 Dissertation for the Degree of Doctor of Philosophy

3-8units Dissertation presents results of original research in area of physical metallurgy. Work must demonstrate originality and creativity and should be worthy of publication in recognized scientific journal. Candidate must take oral examination on thesis subject and related topics. Minimum of 36 units required.

FACULTY

George Fischer, Professor of Metallurgy and Head of Physical and Engineering Metallurgy
B.Met.E., M.Met.E., Polytechnic Institute of Brooklyn Corrosion and welding metallurgy
Irving Cadoff, Professor of Metallurgy
B.M.E., CCNY; M.M.E., D. Eng.Sc., New York University

Electronic materials, liquid metal embrittlement, thin film epitaxy
Louis S. Castleman, Professor of Metallurgy
S.B., Sc.D., Massachusetts Institute of Technology Diffusion in solids, biomaterials
Carmine D'Antonio, Professor of Metallurgy B.Met.E., M.Met.E., Polytechnic Institute of Brooklyn Mechanical properties, thin films, failure analysis
Harold Margolin, Professor of Metallurgy
B.Eng., M.Eng., D.Eng., Yale University

Plastic deformation and fracture, titanium metallurgy, fatigue of metals and alloys

Homi S. Daruvala, Associate Professor of Metallurgy M.A., M.Sc., L.L.B., Bombay University (India); B.S.E., M.S.E. (Chem. Eng.), M.S.E. (Met.), University of Michigan; D. Ch.E., Polytechnic Institute of Brooklyn. Electrochemistry, materials processing and unit operafions, ordering reactions

Henry H. Hausner, Research Professor of Metallurgy E.E., Dr.Eng., Technical University (Vienna, Austria)

Powder metallurgy, powder technolggy

ADJUNCT FACULTY

Simon D. Strauss, Distinguished Visiting Protessor of Metallurgy and Fellow of the Polytechnic Metals and mineral economics

Devendra Gupta, Adjunct Professor of Metallurgy B.Sc., Delhi University (India); B.Sc., Banaras Hindu University (India); M.S., New York University; Ph.D., University of fllinois
Diffusion, solid-stafe transformations, mass transport in thin films

Robert Rosenberg, Adjunct Professor of Metallurgy B.S., Drexel University; M.S., Ph.D., New York University Metallurgy and materials science

George Stem, Adjunct Professor of Metallurgy B.Ch.E., CCNY; M.S., University of Michigan Metallurgy of nuclear materials

John R. Weeks, Adjunct Professor of Metallurgy M.S., Colorado School of Mines; M.S., Ph.D., University of Utah
Metallurgy of nuclear materials, liquid metal technology, stress-corrosion cracking

Emest Levine, Adjunct Associate Professor of Metallurgy
B.Met.E., Rensselaer Polytechnic Institute; Ph.D., New

York University
Electron microscopy
Sankar Sastri, Adjunct Associate Professor of Metallurgy
B.S., Indian Institute of Science; M.S., M.E., Columbia University; Ph.D., Polytechnic Institute of New York Mechanical behavior of metals

James Lloyd, Adjunct Instructor of Metallurgy B.S., M.S., Ph.D., Stevens Institute of Technology Thermodynamics of metals and alloys

Anthony J. Vecchio, Lecturer of Metallurgy M.Met.E., Polytechnic Institute of Brooklyn industrial metallurgy

EMERITUS FACULTY
John P. Nielsen, Professor Emeritus of Metallurgy M.E., Ph.D., Yale University Precious metals and alloys, grain growth and recrystallization, dental materials

MILITARY SCIENCE

Through the Reserve Officers Training Corps (ROTC), the U.S. Army gains officers with diverse educational backgrounds and contemporary ideas. ROTC graduates have the chance to use their ideas in positions of leadership and enable the Army to remain aligned with our ever changing society.

ROTC enhances a student's education by providing unique leadership and management experience found in few college courses. It helps develop self-discipline, physical stamina and poise. Students develop qualities basic to success in any worthwhile career. They earn commissions in the U.S. Army while earning their college degrees.

OFFICER EDUCATION PROGRAM

The four-year Army ROTC program is divided into two parts: the basic course and the advanced course.

Basic Course-The basic course is usually taken in the freshman and sophomore years. No military commitment is incurred during this time, and students may withdraw at any time through the end of the second year. Subjects cover the following areas: management principles, national defense, leadership development, mountaineering, orienteering and marksmanship.

Various social and professional enrichment activities are available in conjunction with the military science program. Necessary fextbooks and materials are furnished without cost to the student. Students who participate in the basic course may be excused from physical education requirements.

After completing the basic course, students who have demonstrated officer potential and meet Army physical fitness standards are eifgible to enroil in the advanced course.

Advanced Course-The advanced course is normally taken in the final two years of cohege. Instruction includes further leadership development, organization and management, tactics, administration, military history and the military justice system.

A paid six-week advanced camp is held during the summer between the junior and senior years. This camp permits cadets to put into practice the principles and theories they have acquired in the classroom. It also exposes them to the conditions of Army life in a factical or field environment.

Allowances-All cadets in the advanced course receive uniforms, necessary military science textbooks, pay for the advanced camp ($\$ 500$), and a living allowance up to $\$ 1,000$ each school year.

To be selected for the advanced course a student must:

1. Be a citizen of the United States. Permanent residents may participate in the advanced course and obtain a commission, but they will not receive the $\$ 1,000$ per year living allowance until they obtain U.S. Citizenship.
2. Qualify for appointment as a second lieutenant prior to reaching 30 years of age.
3. Be approved by the professor of military science.
4. Successfully pass a prescribed medical examination.
5. Successfully pass an educational-level examination.
6. Have successfutly completed the two-year basic course or its equivalent.

THE TWO-YEAR PROGRAM

The two-year program is designed for undergraduate and graduate students who have not taken Army ROTC during their first two years and have two years remaining in school. Students can take advantage of this opportunity by successfully completing a paid sixweek basic camp after their sophomore year and enrolling in the ROTC advanced course in their junior and senior years, provided they otherwise meet enrollment requirements.

OBLIGATIONS

On graduation students can elect to serve on active duty for a three-year period or enter the Ammy Reserve or National Guard as a commissioned officer. Scholarship students incur a four-year active duty obligation. The professor of military science may designate outstanding cadets as distinguished military graduates. Students so designed may apply for a commission in the Regular Army of the United States.

ARMY ROTC SCHOLARSHIPS

Army ROTC offers four-, three- and two-year scholarships. The four-year scholarships are awarded on a worldwide competitive basis to U.S. citizens who will be entering college as freshmen. The three and twoyear scholarships are awarded competitively to students who are enrolled in college and are academically aligned with an ROTC program.
Students who attend the basic camp of the two-year program may also compete for two-year scholarships.

The scholarships pay for tuition, textbooks, lab fees, plus a living allowance of up to $\$ 1,000$ each year the scholarship is in effect.

TYPICAL COURSES FOR STUDY IN MILITARY SCIENCE

Freshman Year		
No.	Title	Sem.
MS 101	Intro. to Military Science I	1
MS 102	Intro. to Military Science Il	2

Sophomore Year
MS 117 MilitarySkills 1

MS 121 Leadership \& Motivational Theory 2
MS 120 Wilderness Training 1
MS 123 Dynamics of National Defense 2

Junior Year

MS 137 Military Tactics 1
MS 134 LeadershipSkills ! 1
MS 131 Military History ${ }^{2}$ 2
MS 135 LeadershipSkills II 2

Senior Year

MS 142 Military Justice 1
MS 144 Applied Leadership ! 1
MS 146 Management Techniques
MS 143 SeniorSeminar 2
MS 145 Applied Leadership II 2

PROFESSIONAL ACTIVITIES

ROTC also offers a variety of social and professional activities. Scabbard and Blade is the advanced course national honor fraternity. The Pershing Rifles promotes military ideals as exemplified by General John J. Pershing. The Society of American Military Engineers promotes the national engineering potential for defense.

The National Association of Rigorous Training Units (Sappers) offers instruction in adventure training, such as mountaineering, rappelling, ranger, airborne and orienteering. These activities offer leadership opportunities that improve proficiency and military skills and enhance confidence.

HOW TO ENROLL

Students should visit the Department of Military Science during the registration period so that the course can be integrated with normal registration procedures. Students interested in the two-year program should contact the department early in their sophomore year for application deadines. If you have any questions concerning ROTC, telephone.(212) $643-2105,2106$, or, at the Farmingdale campus, (616) 694-5500, ext. 118.
${ }^{2}$ An equivalent academic course may be substituted. Substitution requires department approval.

CREDITS TOWARD POLYTECHNIC DEGREES

The number of military science credits that are applicable toward Polytechnic degrees depends on the student's academic major and on which courses the student chooses to replace with ROTC courses. The table and notes (left) outline both the requirements for commissioning and substitutes for ROTC courses.

BASIC COURSES

MS 101 Introduction to Military Sciencel \quad 1:0:0 This course is a practical introduction to the ROTC program. Areas of study include the organization of the ROTC, its programs and the organization of the Army. A large percentage of the classes is devoted to map reading and land navigation in order to develop a working knowledge of topographic maps. Emphasis is placed on how to use different types of maps and how to navigate on the ground with the use of maps and compass.

MS 102 Introduction to Military Science II \quad 1:0:0 Continuation of MS 10t. Development of skills in first aid and orienteering are emphasized. First aid consists of basic life saving measures, burn treatment, splinting and first aid for heat and coid injuries. The orienteering portion of the course consists of familiarization with the techniques and methods of the sport of orienteering and its related equipment.

MS 117 Military Skills

1:0:0
Knowledge of the skills of mountaineering and marksmanship are developed during this course. The mountaineering portion consists of theoretical and practical applications of military mountaineering tactics, techniques and concepts. Emphasis placed on the individual student's ability to comprehend and apply the instruction in a mountainous region of New York State. Marksmanship consists of familiarization with various military weapons, including the $\mathrm{M}-16$ and .22 caliber rifles. The instruction also includes basic aspects of good marksmanship and live weapons firing. Course includes classrom and mandatory fieldwork.

MS 120 Wlidemess Tralning
1.000

This course is designed ta develop a sense of confidence in the student when subjected to living under field conditions. Subjects included in this course are navigation using dead reckoning and terrain association, identification and preparation of edible planta and animals, improvised shelters and field craft. Instruction includes a mandatory two-day field exercise.

MS 121 Leadershlp and Motivational Theory 20:0 Consortium of subjects related to the functioning of a leader, consisting of leadership styles, ethics, counseling. Concentration on aspects of leadership as function of line managament. Power, communication, professionalism, organizational development, motivational theory, subordinatelsuperior relations, alienation.

MS 123 Dynamics of Nathonal Defense
4:000
Survey course in the development and organization of the present U.S. Defense establishment. An explanation of the roles of the various government offices/agencies and their relationships to the defense policy. Topics include: society and the military, the military-industrial complex and current defense trends.

MS 128 Rarger Operations

1.0:0

Instructions and practical field training in smatl unit tactics, techniques and leadership. Course consists of the planning, preparation and conduct of ranger-type patrots under simutated combat conditions. Requisite: Participate with the National Association of Rigorous Training Units.

MS 129 Precison Drill Competition

1:0:0
Designed for students interested in participating in intercollegiate drill competitions with the ROTC Pershing Rifles dril team. Requisite: Participate with the Pershing Rifles Drill Tearn.

ADVANCED COURSES

MS 134 Amercan Miltary History
 20:2 or nc
 as arranged

Survey course stressing interrelationships between the American milltary establishment and American society and how these relationships have influenced the growth of American military system and conduct of American wars. Pote of technology in evolution of tactics and strategy.

MS 134 Leadershtp Skills 1

Coursework is designed through a progressive physical conditioning program coupled with a well-rounded curficulum of related military subjects to develop in the cadet the physical and mental leadership traits of initiative, judgment, courage, endurance, knowledge and enthusiasm, in order to be able to properly motivate and lead subordinates. Prerequisite: MS III standing.

MS 135 Leadership Skilis II 2:0:0 Continuation of MS 134 with a one-week field proficiency test. Prerequisite: MS lil standing.

MS 137 Military Tactics and Organization
1:0:0
Course in basic knowledge of military tactics at small-unit level together with principles of military operations and organizations. Introduction to infantry weapons, small unit tactics, principles of military organizations, fundamentals of offensive and defensive operations, troop leading procedures, techniques of battle drifl.

Advanced Summer Camp

ne
Alt candidates for commission through the ROTC program are required to successfully complete ROTC advanced camp, held at Fort Bragg, North Carolina. Stress placed on leadership and command responsibility, implemented by command rotetton system that has each student assume varying positions of authority during the course of the normal military training program. Emphasis on weapons training and field operations. Camp lasts six weeks and normally is attended between the third and fourth years of college. Students receive travel expenses and pay white at camp. Prerequisites: junior standing, MS 134 and MS 135.

MS 142 Philosophy and Structure of Miltary Justice System

20:2ornc as arranged Topics selected from history of military law, place of law in soclety, Constitution, Uniform Code of Military Justice, recent court decisons, procedural safeguards for servicemen, crittcism of military justice system, military crimes, international laws of war, rules of conduct in hostilities.

MS 143 Senior Seminar

$2-0.2$ or nc as arranged Course designed for student about to finish school and enter the work world. Emphasis is on preparing students for transition finto the Officer Corps. Topics include effective com-
munications, interpersonal relations, professional ethics, personal affairs and career planning. Prerequisites: senior standing and cadet status.

MS 144 Appiled Leadership I
1:0:0
Cadet officers acting in capacities as troop commanders and staff officers instruct tower classmen in military skills. Senior (MS IV) cadets enrolled in this course exercise acquited leadership and management skills through planning of field training exercises, administration of the cadet batallion and presentation of formal ciassroom and field instruction. Prerequisite: MS iV standing.

MS 145 Applied Leadership II
1:0:0
Continuation of MS 144. Prerequisite: MS IV standing.
MS 146 Management Technlques 2:0:2or nc as arranged
Basic considerations and techniques involved in work simpliffcation and scheduling skills. Course is designed to develop skills in work planning and analysis, and provides a logical framework for simplifying any job. Skills in basic scheduling techniques are developed, such as, the critical path method.

FACULTY

LTC Ronald F. Trauner, Professor and Head of the Department of Military Science
B.S., United States Military Academy, West Point; M.S., Purdue University

MAJ Robert Lo Pinto, Assistant Professor of Military Science
B.S., Polytechnic Institute of New York; M.E., Manhattan College

CPT Joseph P. Donneily, Assistant Professor of Military Science
B.S., Norwich University; M.S., Polytechnic Institute of New York

CPT James R. Lingvai, Assistant Professor of Military Science
B.S., University of Toledo; M.S., Polytechnic institute of New York

CPT Herrick E. Marden, Assistant Professor of Military Science
B.S., University of Maine

SGM William H. Brown Ill, Chief Instructor
MSG Spencer W. Putnam, Principal Drill Instructor

NEW YORK UNIVERSITYI POLYTECHNIC COOPERATIVE PROGRAM

The joint program between New York University and Polytechnic, developed under National Science Foundation sponsorship, leads simultaneously to the degrees of master of science and master of public administration.

PROGRAM AIMS

Engineers and scientists increasingly find themselves drawn into problem areas requiring interactions with public policy planners. Similarly, public administrators find themselves increasingly confronted with problems of substantial technical impact. These may include atmospheric chemistry and pollution control, energy policies, operations research, dynamic systems modeling and a host of other areas where technical competence and an understanding of public administration become complementary. The decision-maker, in that portion of the public sector where science and technology play a major role, must have a level of technical competence achieved by graduate study in the engineering or scientific discipline. At the same time, the scientist interested in such a career must be able to work with people whose background is in the legal, fiscal, administrative or sociological areas, and must understand the special problems of public administration. The joint graduate program described herein, leading simultaneously to both the master of public administration and master of science degrees, has been designed to be the ideal solution for both persons.

POLYTECHNIC AND NYU/GPA

The Polytechnic Institute of New York is now the most important engineering and science institution in the New York Metropolitan area. Similarly, The New York University Graduate Sctool of Public Administration, lecated in the nation's greatest metropolis, is an unexcelled focal point for work in public administration. The two schoois are separated by a ten-minute subway ride, so that students have ready access to the resources of both institutions and to the city at large.

COOPERATING SCIENCE AND ENGINEERING PROGRAMS AT THE POLYTECHNIC

The M.S. degree will be awarded by the Polytechnic Institute of New York in one of the following program areas. This degree will be awarded simultaneously with the M.P.A. degree from New York University on successful completion of the program.

Aeronautics and Astronautics
Applied Mechanics
Bioengineering
Chemical Engineering
Chemistry
Civil Engineering
Electrical Engineering
Industrial Engineering
Mathematics
Mechanical Engineering
Metallurgical Engineering
Nuclear Engineering
Operations Research
Physics
System Engineering
Transportation Planning

PROGRAM ELIGIBILITY AND DURATION

The program is open to qualified students with an acceptable undergraduate background in mathematics, science or engineering; some departments will accept students from quantitatively-oriented social science programs. Students must be admitted through one of the cooperating departments at the Polytechnic Institute of New York for one of the M.S programs, as well as through the Graduate School of Public Administration of New York University. The joint program involves two years of full-time study or equivalent parttime study, with a minimum of sixty graduate credits required for the award for both master's degrees. It should be noted that the joint program provides for a significant time saving compared with sequential study for the two master's degrees, which would require at least 36 credits for the M.S. and 44 credits for the M.P.A.

It is assumed that the student has an undergraduate science or engineering background that is essentially equivalent to a Polytechnic degree. Students with deftciencies in their undergraduate preparation may be required to take additional credits for the completion of the degree. Students are expected to be familiar with elementary digital computational procedures and with a programming language such as FORTRAN or PL1. Students without this background shoutd take OR 601 (Introduction to Digital Computing) or CS 530 (Introduction to Computer Science).

JOINT PROGRAM REQUIREMENTS

The following requirements must be met by all students in the program. The minimum of 60 credits is divided into six groups.
(1) Departmental Engineering or Science Courses (24 credits)-The specific required courses and suggested electives for each of the cooperating engineering and science programs conform to those shown in their respective sections of this catalog. A brochure summarizing them is available.
(2) Courses in Mathematical Methods and Statistics (6^{6} credits)-Two courses in mathematical methods, of which one must be in statistical methods, unless an undergraduate or graduate course in that subject has been previously taken.
(3) Required Courses in Public Administration (12 credits)-All students take:
P11.1013 American Public Administration and its Political Environment
P11.1016 Organization Theory in a Public Context P11.1018 Microeconomics for Public Management, Planning, and Policy Analysis
(4) Elective Courses in Public Administration (12 credits) - Three courses, usually in accordance with the suggestions shown by the Polytechnic program.
(5) Project (6 credits) - In the following course description, the $X X$ is replaced by the initials of the
Polytechnic department:

XX 935 Engineering/Sclence Project Related to

 Public Administrationeach 3 units Students will work in groups of two to four on projects relevant to public pollicy andfor administration, selected in consultation with the faculty advisers from Polytechnic and New York University Gractuate School of Public Administration, who will jointly supervise the project. Two semesters are required of alt students during the second half of the joint M.S./M.P.A. program. A third term may be approved by the advisers. Prerequisite: completion of at least 27 credits in the joint program.
(6) Seminar (no credit)-Joint seminars including guest speakers covering technical and scientific problems related to public poilcy. Participation will be required of all students in the program.

Typical Project Topics-The following list of possible project topics is illustrative only; actual topics will be determined by the students and their advisers.

Water resource evaluation and management in the New York area
Determination of pollution standards and abatement feasibility for air, water, thermal or noise pollution

Waste disposal
Transportation needs and allocations
High speed mass transit systems

Air traffic and airport planning and design :

Road traffic control and improvement
Administration in public services with large scientific and engineering inputs

Influence of community values on transportation planning and development

Fire hazards and storage of combustibles
Oil slick control
Conflict of community and technical goals in electric power generation

The role of the engineer in public policy planning
Effects of technological change on personnel administration

Energy policy in the metropolitan area
Admission Details-Applications for admission to the combined program are avaitable from the program coordinator. Applicants should complete the application form for Polytechnic-clearly indicating the desired Polytechnic program-and that for NYU/GPA, and send them to the program coordinator (see address below), enclosing separate checks for the two application fees; only one set of transcripts and references is required. The admission to both schools will then be coordinated through the Polytechnic office.

Financial Aid-Limited financial aid may be available to full-time students entering the program. Requests for financial aid in terms of assistantships should be indicated on the application form.

Registration-Students will formally register for their first year at Polytechnic and their second year at NYU/GPA. Students may take courses at both institutions during both years of the program. A minimum of 27 credits must be completed at Polytechnic and a minimum of 24 credits at NYU/GPA within the total minimum of 60 credits for both master's degrees. At the time of the first registration, a student will be assigned a Polytechnic adviser with whom the overall program should be planned. In addition, students will be assigned an adviser from NYU/GPA by the liaison officer of that school.

Further Information-Additional information may be found in the NYU/GPA catalog. A brochure and application forms are available from the program director:

Prof. Joachim I. Weindling
POLY/NYU Program Director
Polytechnic Institute of New York
333 Jay Street
Brooklyn, New York 11201

NUCLEAR ENGINEERING

Nuclear engineering is the branch of the engineering profession concerned with the practical applications of nuclear energy, that is, the energy emanating from the atomic nucleus. Nuclear engineers today are in the forefront of efforts to solve the nation's mounting energy problems. By 1985 upward of 20 percent of the United States' electric power output will originate in nuclear power piants. In the years ahead, mobile nuclear plants will also be needed in increasing numbers for the propuision of naval vessels and merchant ships. Nuclear fusion, the energy source of the sun and hydrogen bombs, is under development by nuclear engineers and other technologists with the expectation that commercial nuclear fusion plants may become a reality in the early part of the next century.

Quite apart from the domain of nuclear power, nuclear engineers are involved in any and all problems related to nuclear radiation, its use and control. Thus nuclear engineers are called upon to design facilities for radiation processing, the manufacture and utilization of radiopharmaceuticals and the numerous applications of radioactive substances in industry and commerce.

The Department of Nuclear Engineering offers programs of study leading to the bachelor of science, master of science, engineer and doctor of philosophy degrees.

Undergraduate Program

The undergraduate curriculum in nuclear engineering provides the students with a firm foundation in the fundamental sciences and engineering upon which the nuclear engineering protession is based. At the same time, the students receive sufficient training in nuclear engineering per se, either to embark directly upon an industrial career or to continue their education in graduate school. (See "Typical Course of Study" on the following page.)

Graduate Program

Requirements for the Master's Degree-A minimum of 36 units is required, including either the sequence NU 601602 or NU 701-702 and the sequence NU 603-604, NU 606 and NU 607.

Requirements for the Degree of Nuclear Engineer-A minimum of 36 units of work beyond the master's degree is required. The student must satisfactority complete the sequences NU 701-702-703, NU 603-604,

NU 606 and NU 607 or equivalents. In general, a project in nuclear engineering should also be completed. A maximum of 12 units, to be included within the overall unit requirement, may be devoted to the project. In special cases, where the student has previously completed work which would constitute a satisfactory project but which was accomplished in a non-academic setting, the project requirement may be waived.

Requirements for the Doctor's Degree-The student must complete 90 units of graduate work, of which at least 24 units are devoted to completion of a thesis and at least 66 units to course work. The student must satisfactorily complete the sequences $\mathrm{NU} 701-702-703$, NU 603-604, NU 606 and NU 607.

The student should demonstrate proficiency in translating technical articles into English from one foreign language commonly used in international fournais. Generally, French, German or Russian will be acceptable for fulfillment of this requirement. Another language may be substituted only with approval of the department.

To be considered a doctoral candidate, a student must pass an examination, usually both written and oral. This examination will ordinarily precede starting of the thesis. On completion of the thesis, the student will be required to defend it satisfactorily at an oral examina. tion.

While the specific course requirements for graduate degrees are minimal, every student should choose a program together with a departmental adviser. Students with differing interests and backgrounds may take substantially different programs in addition to the core courses.

UNDERGRADUATE COURSES

NU 301 introduction to Nuctear Engineering I 3:0:3
introductory survey of nuclear engineering. Review of atomic and nuclear physics, interaction of radiation with matter, neutron chain reactions, nuclear reactor types. Prerequisite: PH 232 of equivalent.

NU 302 Introduction to Nuclear Éngineering II 3.0:3 Continuation of NU 301. Elementary nuclear reactor design, reactor kinetics and control, heat removal from reactors. Pre requisite: NU 301.

NU 303 Nuclear Engineering Labl
21/2:11/2:3
Study of radiation detection instruments: GM counters, proportional counters, ionization chambers, health physics in-

Typical Course of Study for the Bachelor of Science Degree in Nuclear Engineering

Freshman Year

First Semester			Hours/Week	
No.	Subject	Cl.	Lab.	Cr
MA 101	Catculus ${ }^{\text {m }}$	4	0	4
PH 101	Introductory Physics !	3	0	3
CM 101	General Chemistry !	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab. I	0	$11 / 2$	1/2
HU 101	Coliege Composition'	3	0	3
SS 104	Contemp. World Hist ${ }^{\text {n }}$	3	0	3
PE 101	Physical Education ${ }^{\text {d,r }}$	0	2	0

Second	Sernester
No.	Subject
MA 102	Caiculus ${ }^{\text {m }}$ m
PH 102	Introductory Physics II
CM 102	General Chemisiry II
CM 112	Gen. Chemistry Lab. If
CS 111	Intro. to Programming
HU 200	intro. to Literature ${ }^{\text {h }}$
PE 102	Physical Education ${ }^{\text {d,t }}$

	Hours/Week	
Cl.	Lab.	Cr .
4	0	4
$31 / 2$	$11 / 2$	4
$21 / 2$	0	21/2
0	$11 / 2$	1/2
3	0	3
3	0	3
0	2	0

Sophomore Year

MA 104	Diff. Equations ${ }^{\text {m }}$	3	0	3
MT 301	Mech. Behavior of Materials	3	0	3
PH 103	Physics III	21/2	$11 / 2$	3
AM 115	Eng. Mech.	4	0	4
	Hum./Soc. Sci. ${ }^{\text {b }}$	3	0	3
PE 103	Physical Educationd.r	0	2	0
				16

MA 103	Calculus tIIm	3	0	3
PH 232	Modern Physics	$21 / 2$	$11 / 2$	3
CE 202	Mech. of Materials	3	0	3
EE 370	Prin. of Elec. Eng.	3	0	3
EE 374	Instrumentation Lab.	0	3	1
	Hum./Soc. Sci.			
PE 104	Physical Education ${ }^{\text {d.r }}$	3	0	3
		0	2	$\underline{0}$
				16

Junior Year

MA 260	Vec. Anal./Par. Diff. Eq.	4	0	4	MA 358	Numerical Analysis	3	0	3
AM 201	Thermodynamics I	3	0	3	NU 302	titro. to Nuclear Eng. I!	3	0	3
AM 231	Ftuids 1	3	0	3	NU 306	Radiation Protection	3	0	3
NU 301	Intro. to Nuclear Eng. I	3	0	3		Hum./Soc. Sci. ${ }^{\text {² }}$	3	O	3
	Hum./Soc. Sci. ${ }^{\text {² }}$	3	0	3		Free elective			3
				16		Technical elective			3
								.	18
Senior	Year								
MA 201	Applied Analysis 1	3	0	3	MA 202	Applied Analysis II	3	0	3
AM 203	Heat Transter	3	0	3	NU 304	Nuclear Eng. Lab II	$21 / 2$	$11 / 2$	3
NU 303	Nuclear Eng. Lab. I	$21 / 2$	11/2	3	NU 308	Nuclear Eng. Design	3	0	3
NU 307	Licensing, Satety, Env.	3	0	3	NU 336	Atomic/Nuclear Physics it	3	0	3
NU 335	Atomic/Nucleat Physics !	3	0	3		Technical elective			3
	Hum./Soc. Sci. ${ }^{\text {² }}$	3	0	3		Free elective			3
				18					18

Total credits required for graduation: 135
inn the humanities and social sciences the student must take HU 101 and either HU 200 and SS 104 or IS 140 and IS 141. Students who are placed in HLJ 103 on the basis of the English Composition Placement Test administered at
Polytechnic to all incoming students may substitute HU 103 for HU 101. Students placed in HU 008 or HU 009 must complete th is noncredit writing course before taking HU 101 (or HU 103).

At least 6 additional credits must be taken from outside the area of modern languages. it is recommended that students intending to go on for the doctorate take at least one language from among French, German and Russian.
mStudents with a strong background in mathematics may wish to substitute the sequence MA 111-114 for MA 101-104.
dDay students only.
'ROTC students should note that freshmen and sophomores may substitute zero-credit mijitary science courses for PE $101 \cdot 104$ (physical education); juniors and seniors may substitute three of the following two-credit courses: MS 131, 142, 143, 146, for six credits of technical electives.

Alt elective courses are to be chosen in consultation with the depariment adviser.
Note that because of possible scheduling conflicts between courses given in different departments, the student may find it advisable to switch the order in which certain courses are taken. This should always be done in consultation with the department adviser to avoid possibie difficulties with prerequisites.
struments, scintillation spectrometry, activation analysis, cross-section and shielding measurements, macroscopic properlies of reactor materlals. Corequisite: NU 301.

NU 304 Nuclear Engineering Lab. II 21⁄2:112:3

 Continuation of NU 303. Macroscopic properties of reactors: Fermi age, diffusion tength, buckling, thermal utifization, resonance escape probability, delayed neutrons, criticality measurements; static and dynamic behavior of critical reactors. Prerequisite: NU 303.NU 308 Principles of Radiation Protection
3:0:3
Fundamentals of health physics and radiation protection. Interaction of ionizing radiation with matter, biological effects of radiation, dosimetry, radiation shielding, radiation codes. Prerequisite: NU 301.

NU 307 Reactor Licensing, Safety and the Environment

3:0:3
Governmental authority and responsibility, reactor licensing, nuclear power plant safety, dispersion of effluents from nuclear facilities, radiation doses from nuclear power plants, reactor siting, reactor accidents, accident risk analysis, environmental radiation doses. Prerequisites: NU 302 and NU 306.

NU 308 Nuclear Engineering Design
3:0:3
A design course in which students address the full range of problems involved in the design of a practical nuclear facility. Each student must prepare and defend orally a design report on the facility. Prerequisite: NU 307.

NU 335-336 Atomic and Nuclear Physics 1, II each 3.0:3 Introduction to electronic and nuclear structure of the atom. Felativity, wave mechanics, natural and artificial radioactivity, fission and cosmic rays. Fundemental experiments and postulates of wave and particle atomic physics. NU 335 prerequisite: PH 232. NU 336 prerequisite: NU 335.

GRADUATE COURSES

NU 601 Introduction to Nuclear Engineering 1
$300: 3$
Introductory survey of nuclear engineering. Review of atomic and nuclear physics, interaction of radiation with matter, neutron chain reactions, nuclear reactor types. Prerequisite: PH 232 or aquivalent.

NU 602 Introduction to Nuclear Engineering II . 3:0:3 Continuation of NU 601. Elementary nuclear reactor design, reactor kinetics and control, heat removal from reactors. Prerequisite: NU 60 .

NU 603 Nuclear Engineering Laboratory $1 \quad$ 21/2:1 $1 / 2: 3$ Study of radiation detection instruments, GM counters, proportional counters, ionization chambers, health physics instruments, scintillation spectrometry, activation analysis, crosssection and shielding measurements, macroscopic properlies of reactor materials. Prerequisite: NU $\mathbf{6 0 1}$ or equivalent.

NU 604 Nuclear Engineering Laboratory IH 21/2:11/2:3 Continuation of NU 603. Macroscopic properties of reactors: Fermi age, diffusion length, buckling, thermal utilization, resonance escape probability, delayed neutrons, criticality measurements; static and dynamic behavior of critical reactors. Prerequisite: NU 603.

NU 606 Princlples of Radiation Protection
3:0:3
Fundamentals of health physics and radiation protection. Interaction of ionizing radiation with matter, biological effects of radiation, dosimetry, radiation shielding, radiation codes. Prerequisite: NU 601 or equivalent.

NU 607 Reactor Licensing, Satety and the Environment

Governmental authority and responsibility, reactor licensing, nuclear power plant safety, dispersion of effluents from nuclear facilities, radiation doses from nuclear power plants, reactor siting, reactor accidents, accident risk analysis, environmental radiation doses. Prerequisites: NU 602 and NU 606.

NU618 Introduction to Thermonuclear Power
3:0:3
Survey of problems associated with attaining controlled thermonuclear power. Fusion reactions, thermonuclear reaction rates, plasma physics, radiative losses from plasmas, methods of plasma containment, energy extraction from plasmas.

Also listed under EL 657

NU 701 Nuclear Reactor Theory ${ }^{*}$ * $3: 0: 3$
Intermediate course in nuclear reactor theory. Review of neutron interactions, flux, current and neutron ciffusion. Prerequisite: NU 602 or equivalent.

NU 702 Nuclear Reactor Theory II*

3:0:3
Continuation of NU 701. Neutron slowing down with and without absorption and fission; Fermi age and group theories of critical systems. Prerequisite: NU 701.

NU 703 Nuclear Reactor Theory III*
3:0:3
Continuation of NU 702. Heterogeneous reactors, reactor kinetics, temperature coefficients, fission product poisoning, reactor lifetime calculations, control rods, perturbation theory. Prerequisite: NU 702.

NU 705-706 Advanced Nuclear Engineering

 Laboratory $1,1{ }^{*}{ }^{*}$each $21 / 2: 1 \frac{1}{2}: 3$
Selected advanced experiments chosen to reflect the interests of the students, subject to the avaitability of necessary laboratory equipment. Prerequisite: NU 604.

NU 712 Radlation Shielding*

3.0:3

Theory and practice of neutron and gamma ray shielding. Prerequisite: NU 606.

NU715 Heat Transfer

21/2:0:3
Comprehensive treatment of basic heat transfer mechanisms.
Steady and unsteady conduction, including systems with internal heat sources. Internal and external forced and free convection. Radiation between surfaces and in gases. Classical analytlcal techniques and experimental methods. Analogies be tween heat, mass and momentum transfer. Dimensional analysis and boundary layer considerations. Fins and heat exchangers. Condensation and boiling. Prerequisite: adviser's approval. Also ligted under AM 715

NU716 Reactor Heat Tranafer

$21 / 2,0,3$
Study of heat transfer problems and solution techniques associated with various test, power and propulsion nuclear reactors including BWR, PWR, LMFBR and HTGR. Core geome tries and primary loop components. Introduction to flow boiling phenomena, liquid metal heat transfer, combined convection and radiation gas flow. Behavior during toss of coolant accidents and emergency core cooling systems. Prerequisite: NU 715 or equivalent.
Also listed under AM 718
NU 721 Economics of Nuclasr Power
3.0:3

Economic considerations in design of stationary nuclear power plants. Prerequisite: NU 602.
NU 726 Matallurgy of Nuclear Reactor Materials* 300.3 Study of material requirements for basic parts of nucle ar reactors. Metallurgy of fueis, moderator, control and construction materials. Description of handling and fabricating techniques. Prerequlsite: adviser's approval.
Also listed under MT 726

NU731 Nuclaar Chemical Engineering*

Applications of chemical engineering principles to peocessing of nuclear engineering materials. Fuei cycles of nucleay reactors, chemistry of uranium, plutonium, fission products, theory of isotope separation processes. Prerequisite: NU 602.

NU 801 Radiation Transport Theory ${ }^{*}$

30:3
Linear transport equation, applications of conservation principles, geometrical attenuation, solution methods with application to classical albedo, Milne and criticality problems. Prerequisite: instructor's permission.

NU 802 Radiation Transport Theory II*

3:0:3
Continuation of NU 801. Further discussion of solution techniques, diffusion boundary conditions, energy-dependent neutrons, radiative transfer. Prerequisite: NU 801.

NU811 Control of Nuclear Reactor Plants |* 3:0:3 Introduction to control systems and nuclear reactor dynamics. State space representation of dynamical systems, input-output relations, Laplace transform, state transition function, transfer function. Analysis of linear systems, stability of linear systems. Derivation of reactor dynamics equations, feedback reactivity, linear reactor dynamics. Introduction to nonlinear dynamical systems, Lyapunov function, stability of nonlinear systems. Prerequisite: NU 703.

NU 812 Control of Nuclear Reactor

 Plants Il*30:3
Continuation of NU811. General derivation of reactor dynamics equations. Nonlinear reactor dynamics, reactor stability criteria. Optimal control of nuclear reactor systems. Stochastic systems, reactor noise, optimization of stochastic systems. Introduction to distributed-parameter systems, space-dependent reactor dynamics, xenon spatial oscillation, neutron wave propagation. Reactor safety. Prerequisite: NU B11.

NU 902-903 Seminar in Nuclear Engineering

Recent developments in the field of nuclear engineering through lectures given by scientists and engineers from industry, research and educational institutions, and by staff members and qualified graduate students.

NU911 Projects in Nuclear Engineering
3003
Project course of advanced nature, conducted by assigning individual investigations to be performed by student under supervision of staff member. Consists of theoretical and experimental engineering of interest to student.

NU 927 Energy Policy Issues
 21/2:0:3

See Energy Program for details.
NU 928 Energy Resource Distribution and Converston Technology
$21 / 2.0: 3$
See Energy Program for details.
NU 935 Engineering Projects Related to Public Administration
each3 units
See Cooperative Program with New York University's Graduate School of Public Administration for details.

NU 961 1.962 Thesis for Degree of Master of Science
each 3 units
Independent investigation of problem in nuclear engineering. Acceptance of student by faculty adviser required before registration. Registration fee, any part-3-unit charge. Prerequlsite: degree status.
NJ 971.972 Project for Degree of Englneer each 3 unlts Independent project in nuclear engineering. Acceptance of student by faculty adviser required before registration. Registration fee, any part-3-unit charge. Prerequisite: candidacy for engineer degree.

NU 981-988 Thesis for Degree of Doctor of Philosophy

each3 units
Original investigation in some aspect of nuclear engineering or science. Candidate required to defend thesis at oral examination. Acceptance of student by faculty adviser required before registration. Registration fee, any part-3-unit charge. Prerequisite: candidacy for Ph.D. degree.

FACULTY

John R. Lamarsh, Professor of Nuclear Engineering and Head, Department of Nuclear Engineering B.S., Ph.D., Massachusetts Institute of Technology Nuclear reactor theory, nuclear weapons proliferation

Raphael Aronson, Professor of Nuclear Engineering and Physics
B.S., University of Minnesota; M.A., Ph.D., Harvard University
Transport theory
KunMo Chung, Research Professor of Nuclear Engineering
B.S., Seoul National University (Korea); Ph.D., Michigan State University
Thermonuclear power, international nuclear power development

Walter Kiszenick, Associate Professor of Physics and Nuclear Engineering
B.S., Brooklyn College; M.S., Ph.D., Polytechnic

Institute of Brooklyn
Electron microscopy, x-ray diffraction
Richard S. Thorsen, Associate Professor of
Mechanical, Aerospace and Nuclear Engineering and Head, Department of Mechanical and Aerospace Engineering
B.M.E., CCNY; M.M.E., Ph.D., New York University Heat transfer, energy conversion, nuclear reactor safety

Chem H. Tsai, Research Associate Protessor of Nuclear Engineering
B.S., University of Arizona; M.S., New York University; Ph.D., Iowa State University
Nuclear reactor safety, system design

ADJUNCT FACULTYBrooklyn Campus

Robert W. Kupp, Adjunct Professor of Nuclear Engineering
B.S., Wayne State University

Economics of nuclear power

David C. Purdy, Adjunct Professor of Nuclear Engineering
B.S., Webb Institute of Naval Architécture; Oak Ridge
School of Reactor Technology
Reactor heat transfer

George Stem, Adjunct Professor of Metaliurgy and Nuclear Engineering
B.Ch. E., CCNY; M.S., University of Michigan Nuclear metallurgy

ADJUNCT FACULTY-Brookhaven National Laboratory

Robert A. Bari, Adjunct Professor of Nuclear Engineering A.B., Rutgers - The State University; Ph.D., Brandeis University
Nuclear reactor safety
Ralph J. Cerbone, Adjunct Professor of Nuclear Engineering
B.S., Boston College; M.S., Ph.D., Rensselaer Polytechnic Institute
Nuclear reactor safety, radiation shielding
David J. Diamond, Adjunct Professor of Nuclear
Engineering
B.E.P., Comell University; M.S., University of Arizona;

Ph.D., Massachusetts Institute of Technology
Nuclear reactor theory and satety
Frank B. Hill, Adjunct Professor of Nuctear Engineering
B.Ch.E., Catholic University of America; Ph.D., Princeton University
Nuclear chemical engineering

Melvin M. Levine, Adjunct Professor of Nuclear Engineering
B.S., Ph.D., Massachusetts lnstitute of Technology Nuclear reactor safety

David C. Rorer, Adjunct Professor of Nuclear Engineering
B.S., Massachusetts Institute of Technoiogy;
M.S., University of Ilifnois; Ph.D., Duke University

Experimental reactor physics
John R. Weeks, Adjunct Professor of Nuclear Engineering and Metallurgy
Met.E., Colorado School of Mines; M.S., Ph.D., University of Utah Nucfear metallurgy

Wolfgang Wulff, Adjunct Professor of Nuciear Engineering
B.S.M.E., Institute of Technology Winterthur (Switzerland); M.S., Ph.D., Illinois Institute of Technology
Heat transfer
Wiliam G. Shiffmacher, Adjunct Lecturer in Nuclear Engineering
B.E.E., Manhattan College; M.S., Long island University

Economics of nuclear power
Frank J. Vitale, Adjunct Lecturer in Nuclear Engineering
B.E.E., Polytechnic Institute of Brooklyn; M.S., C.W. Post College
Economics of nuclear power

OPERATIONS RESEARCH

The Diviston of Management offers programs in the area of operations research at the bachelor's, master's and doctoral levels.

Because of the vital importance of economics in operations research and reiated fields, the division has developed substantial strength in this area; master's and doctoral-level programs are offered in economic systems.

The field of operations research is concerned with the development and application of advanced analytical techniques to the operation of complex systems and the optimal allocation of resources. The last few decades have witnessed an increasing use of mathematical models in nearly all fields of endeavor. There is a need for trained professionais who can play an important role in the development of quantitative models and solution techniques for a broad array of chailenging problems.

Operations researchers address themselves to such problems as production, distribution and marketing, allocation of urban resources, industriai and government operation and economic theory. They deal with analysis, design and utilization of modern, large-scale systems ranging from completely automated processing plants through urban systems--transportation, justice and health care, for example--to managerial systems composed solely of human beings. They concern themseives with those areas in which the systems approach, engineering knowledge, and analytical techniques are applied directly to the most urgent problems of society.

Operations research is a rapidly developing professional field with opportunities in many diverse areas. For example, practitioners are calted on to:

- Analyze and plan production schedules and inventories.
- Devise ways of maximizing the effectiveness of hospitals and other health care facilities.
- Study the feasibility of equipment replacement.
- Evaluate proposed traffic control procedures.
- Locate new plants and design their physical tayout.
- Measure the effectiveness of advertising and marketing policies.
- Evaluate effectiveness of urban solid waste collection and removal systems.
- Develop computer simulations of man-machine systems.
- Study the effects of feedback and automation on society and industry.

Operations researchers concern themseives with systems in which the mission is imprecisely specified, in which limited resources are available, or where
there is great variability in input and output demands. They are involved in decision-making in the face of incomplete information and conflicting objectives-objectives that frequently cannot be adequately defined, that are subjective and that are difficult to quantify. They seek to allocate limited resources in an optimal manner. A unifying theme focusing this body of knowledge and methods into a coherent entity is the system point of view. The search for similarity among concepts, laws and models of different disciplines, the emphasis on the adaptation, integration and exploitation of existing techniques in areas other than their fields of origin, and above all, a unique point of view dealing with relationships rather than with com-ponents-these characterize the orientation.

UNDERGRADUATE PROGRAM

The undergraduate program leads to the degree of bachelor of science in operations research. The program is built on the essential scientific and mathematical foundations underlying its field.

The undergraduate program requires 128 credit-hours of work, including mathematics, chemistry, physics, humanities, social science, required departmental courses, and technical and free electives. The humanities, technical and free electives permit an extremety flexible program of study in which the student has the opportunity to pursue individual interests that build on the core requirements. Some possible elective sequences are listed after the curricula; these are mere suggestions, not required sequences of study.

The student wishing to enter this fieid should normally prepare to continue studies beyond the bachelor's level. Accordingly, undergraduate training places heavy emphasis on mathematics and the basic physicat and social sciences that are necessary for graduate study in this area.

ROTC students should note that freshmen and sophomores may substitute zero-credit military science courses for PE 101 -104 (physical education); juniors and seniors may substitute three of the following two-credit courses: MS 131, 142, 143, 146, for six credits of technical electives.

Graduate Courser may be taken as electives by qualified juniors and seniors with at least a B average, who obtain their adviser's approval. If the total number of credits exceeds those required for the bacheior's degree, these graduate credits may be credited toward a graduate degree in accordance with current policy.

Requirements for the Bachelor of Science		
		Credits:
Mathematics:	MA 101, ${ }^{1}$ MA 102, ${ }^{\text { }}$ MA 103, ${ }^{1}$ MA 104,' MA 153, MA 223, MA 224, MA 555'	26
Science:	CM 101, CM 102, CM 111, CM 112, CS 100, PH 101, PH 102, PH 103	18
Humanities:	HU 101, HU 200,', SS 104,' SS 189,SS 251,SS 252	18
Physical Ed:	PE 101, PE 102, PE 103, PE 104	0

| Major: | IE 254, IE 300, IE 314, IE 319, |
| :--- | :--- | ---: |
| | IE 327, IE 328, IE 346, IE 380 |$\quad 24$

Typical Four-Year Operations Research Program

A typical program sequence covering eight semesters is shown below and on the following page. Students may rearrange courses and increase or decrease load per semester to suit their educational needs, provided prerequisites are not violated.

Typlcal Course of Study for the Bachelor of Sclence Degres in Operations Research

Freshman Year

Second	Semester		Hours/Week	
No.	Subject	Cl	Lab.	Cr.
HU 200	Intro. to Literature	3	0	3
MA 102	Calculus If	4	0	4
PH 102	Introductory Physics II	$31 / 2$	$11 / 2$	4
SS 252	Economics Il: Macro-Econ.	3	0	3
PE 102	Physical Education	0	2	0
	Electives 2			$\frac{3}{7}$
				17

Sophomore Year

CM 101	General Chemistry I	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab.1	0	$11 / 2$	$1 / 2$
IE 254	Industrial Management	3	0	3
MA 104	Appl. Differential Eqns.'	3	0	3
PH 103	Introductory Physlcs III	$21 / 2$	$11 / 2$	3
PE 103	Physical Education III	0	2	0
	Electives 2			$\underline{4}$
				16

CM 102	General Chemistry II	$21 / 2$	0	$21 / 2$
CM 112	General Chemistry Lab. II	0	$11 / 2$	$1 / 2$
MA 103	Calculus III	3	0	3
MA 153	Elem. of Linear Algebra	3	0	3
SS 104	Conternp. World Hist.'	3	0	3
PE 104	Physical Education IV	0	2	0
	Electives			

Junior Year	
IE 327	Operations Research I
MA 223	intro to Probability
SS 189	intro. to Psychology
	Electives 2

Senior Year

IE 314	Modeling of Social Syst.	3	0	3	IE 346	Oper. Des. of Public Syst.	3	0	3
IE 319	Prodetn. Planng. 8 Control	3	0	3		Electives ${ }^{2}$	0	0	13
MA 555	Design of Experiments'	2	3	3					16
	Electives ${ }^{2}$			7					16
				16		Total credits required			

[^17][^18]
TRANSFER STUDENTS

Transfer students who have completed two years of study at a coliege of liberal arts and science or a community college may ordinarily complete the requirements for the bachelor's degree in two additional years of study. Assuming that the student has completed 64 credits equivalent to MA 101-104, PH 101-103, CM 101-102, CM 111-112, CS 100, HU 200, SS 104, SS 189 , SS 251-252, plus 14 credits of acceptable electives, the student can complete the requirement as follows:

EVENING PROGRAM

The degree requirements for part-time evening students in the operations research program are in all respects identical to those for full-time students. The evening program is structured for eight years without summer work.

A suggested sequence is shown betow; students may change this sequence and increase or reduce the number of credits per term to suit their needs or available time, provided they do not violate the prerequisites.

Requirements for Transfer Students

Junior Year

First Semester			Hours/Week		Second Semester			Hours/Week	
No.	Subject	Cl .	Lab	Cr .	No.	Subject	Cl .	Lab	Cr
IE 254	Industrial Management	3	0	3	IE 300	Eng. Economic Analysis	3	0	3
IE 327	Operations Research 1	3	0	3	IE 328	Operations Research II	3	0	3
MA 223	Intro. to Probability	3	0	3	IE 380	System Simulation	3	0	3
	Electives ${ }^{2}$			6	MA 153	Elements of Lin. Algebra	3	0	3
				15	MA 224	Intro. to Math Statistics	3	0	3

Senior Year

IE 314	Modeling of Social Systems	3	0	3	IE 346	Oper. Design of Public Syst. Electives ${ }^{2}$	3	0	$\begin{array}{r}3 \\ 14 \\ \hline\end{array}$
IE 319	Prodetn. Planng. \& Control	3	0	3					
MA 555	Design of Experiments	3	0	3					17
	Electives ${ }^{2}$			8					
				17					

See notes under typical course of study. page 213.

Suggested Sequence of Study for Evening* Students

First Year

First Semester		Hours/Weak		Second Semester			Hours/Week	
No. Subject	Cl .	Lab.	Cr .	No.	Subject	Cl .	Lab.	Cr.
HU 101 College Composition	3	0	3	CS 100	Intro. to Computer Progr.	2	0	2
MA 101 Calculus ! ${ }^{1}$	4	0	4	MA 102	Calculus II'	4	0	4
				PH 101	Introductory Physics I	3	0	3
Second Year								
MA 103 Calculus ill ${ }^{1}$	3	0	3	MA 104	Appl. Diff. Equations ${ }^{+}$	3	0	3
PH 102 Intro. Physics II	$31 / 2$	11/2	4	PH 103	Introductory Physics III	21/2	$11 / 2$	3
				SS 104	Contemp. World Hist.'	3	0	3
Third Year								
CM 101 General Chemistry I	21/2	0	21/2	CM 102	General Chemistry II	$21 / 2$	0	21/2
CM 111 General Chemistry Lab. I	0	$11 / 2$	1/2	CM 112	General Chemistry Lab. II	0	$11 / 2$	1/2
HU 200 Intro to Literature ${ }^{1}$	3	0	3	MA 223	Intro. to Probability	3	0	3
IE 254 Industrial Management	3	0	3		Elective 2			3
Fourth Year								
IE 327 Operations Fesearch I	3	0	3	IE 328	Operations Research II	3	0	3
MA 224 Intro. to Math. Statistics	3	0	3	SS 252	Economics II: Macro-Econ.	3	0	3
SS 251 Economics I: Micro-Econ.	3	0	3					
Fifth Year								
IE 314 Modeling of Social Systems	3	0	3	IE 300	Eng. Economic Anatysis	3	0	3
SS 189 Intro. to Psychology	3	0	3	MA 153	Elem. of Linear Algebra	3	0	3

Sixth Year									
IE 319	Prodetn. Planning \& Control Elective ${ }^{3}$	3	0	3 6	IE 380	Systerm Simulation Electives ${ }^{2}$	3	0	3 6
Seventh Year									
MA 555	Design of Experiments Electives ${ }^{2}$	3	0	3	IE 348	Oper. Design for Pub. Syst. Electives ${ }^{2}$	3	0	3
Eighth Year									
	Electives ${ }^{2}$			9		Electives ${ }^{2}$			8

"See notes under typical course of study, page 213.

SUGGESTED ELECTIVE SEQUENCES

Students often seek guidance in using the permitted electives to develop a meaningful sequence for concentration. Some suggested groupings are shown below from which the student may select his electives. Courses numbered 600 or above are graduate courses requiring a B or better average and the adviser's special permission. Since these suggestions are addressed to both industrial engineering and operations research students, some of the electives may duplicate required courses. These are merely suggestions, not required sequences of study.

Behavioral Science
Credits
SS 175 Introduction to Sociology 3
SS 185 Anthropologyl 3
SS 191 Social Psychology
SS 192 Experimental Psychologyl
3
Experimental Psychology
SS 198 Psychology of Human Dev. 3
SS 199 Organizational Behavior 3

Bloengineering		
BE 201	Syst. Apprch. to Biomed. I	2
BE 202	Syst. Apprch. to Biomed. II	2
CM 122	Organic Chemistry I	3
CM 164	Phys. Chem. of Living Systerns	3
LS 105	General Biology I	3
LS 106	General Biology H	3
LS 115	General Biology Lab. I	7
LS 116	General Biology Lab. II	1

Computer Sclence

CS 203 Computer Programming II 3
CS 204 Intro. to Data Structures
CS 205 Assem. \& Mach. Lang. Prog.
CS 206 Compilers
CS 236 Switch. Circuits \& Dig. Syst.
CS 237 Intro. to Comp.Architecture
CS 238 Computer Systems
CS 297 Computer Laboratory I
CS 299 Computer Laboratory II

Control Systems

EE 101 Electrical Systerns ! 3
EE 102 Electrical Systems II 3
EE 103 Electrical Systems III
EE 104 FeedbackSyst. Theory w. Applic.
EE 107 Control System Design
EE 111 Solid-StateDev. \& Circ. I
EE 141 Signal Processing

Economics

SS 255 Contemp. Amer. Policy 3

SS 257 History of Economic Thought 3
SS 258 Comp. Economic Systems 3
SS 259 Economic Development 3
SS 263 Labor Economics 3
SS 264 Urban Economics 3
SS 265 Money and Banking 3
Management
IE 252 Cost Fundamentais 3
MG 300 Management Process 3
MG 612 Human Resources Management 3
MG 664 Legal Environment of Business 3
MG 606 Managerial Finance 3
MG 607 Marketing Management 3
SS 199 Organizational Behavior 3
Mathematics, Applied
MA 153 Elements of Linear Algebra 3
MA 201 Applied Analysis I 3
MA 202 Applied Analysis II 3
MA 217 Complex Variables 3
MA 260 VectorAnal. \& Part. Diff.Equa. 4
MA 358 Intro. Numerical Analysis 3
Operations Research, Advanced
MA 153 Elements of Linear Algebra 3
OR 618 Inventory Models 3
OR 631 Linear Programming 3
OR 632 Nonlinear Programming 3
OR 650 Queuing Systems i 3
OR 665 Microeconomic Models . 3
Statistics and Probability
IE 311 Statistical Quality Control 3
MA 232 Statistical Methods II 3
MA 238 Applied Probability 3
MA 554 Applied Decision Theory 3
MA 556 Correl. \& Multivar. Mod. 3
MA 557 Sampling 3
OR 852 Regression \& Anal. of Variance 3
OR 853 Design of Experiments 3
Transportation Systems
TR 360 Traffic Planng. \& Opertns. 3
TR 361 Transportation Models 3
TR 362 Public Transit Tech. \& Oper. 3
TR 670 Planng. \& Design of Termis. 3
TR 715 Urban Goods Movement 3

Urban Systems

IE 346 Oper. Des. of Urban Systems 3
LS 140 Environmental Biology 3
SS 180 Sociology of Urbanization 3
SS 182 Man and the Environment 3
SS 264 Urban Economics 3
TR 630 Urban Planning Principles 3
TR 631 Urban Planning Methods

GRADUATE STUDY

The division offers master of science and doctor of philosophy degree programs in the areas of operations research and economic systems. Within these degree programs, students may pursue graduate studies in such specialized areas as information science, system simulation, management science, experimentai design, industrial economics, mathematical programming, social systems dynamics, production engineering, production and inventory models, queuing theory and applications, reliability and maintainability. Certificate programs are available for more limited graduate study in a wide range of specialized topics.

Graduate students come with diverse academic training. Most professionals in thése areas of specializa. tion receive the major part of their training at the graduate level. One ingredient common to our students is a desire to develop techniques for problem-solving and decision-making in a technological world.

Students are encouraged to seek waivers for all required courses in which they can demonstrate competence, so that they can use their time most effectively.

GRADUATE PROGRAMS

Operations Research-This curriculum encompasses the related fields of operations research and management science. It is directed toward the analysis and design of managerial systems comprised of human, technological and economic resources.

Operations analysts address themselves to problems of production, distribution, and marketing, industrial and governmental operations, public planning and services, military analysis and others. Their services are sought by all levels of government, public agencies, industry and non-profit research organizations.

The graduate curriculum leading to the degree of master of science in operations research is designed for engineers, scientists and mathematicians who wish to broaden their prior training with work in operations research and for students with undergraduate background in this field who wish to pursue advanced studies.

A bachelor's degree and competence in calculus (equivalent to MA 103) are required for admission to the program. Applications should be made to the Division of Management with operations research indicated as the area of specialization.

Students entering the program without a three credit minimum in probability (not including statistics) are urged to take such a course during the summer preceding their first term.

The program in operations research leads to the degrees of master of science in operations research and doctor of philosophy.

Economic Systems-The program in economic systems is intended to develop individuals proficient in the construction and implementation of economic models, both at the level of the individual firm and of the entire economy. Such models provide engineering managers with important tools for decision-making.

Starting with fundamental courses in engineering economics, microeconomic and macroeconomic decision models, the student is encouraged to complement the program with related courses in methodology and practice. This may include work in production planning, application of linear programming theory or courses in management and social sciences.

An undergraduate degree in engineering or science usually provides the necessary prerequisites for admission to the program. Further, undergraduates in economics and other quantitative social sciences are also encouraged to enter the program if their interests are in economic systems. If competence in mathematics through calculus (MA 103) has not been attained, appropriate courses to remove this deficiency will be required on admission to the program. Application should be made to the Division of Management with economic systems indicated as the area of specialization.

The graduate program in economic systems leads to the degrees of master of science and doctor of philosophy.

MASTER OF SCIENCE DEGREES

Operations Research

Requirements for the master of science in operations research degree:
A. Basic Required Courses ${ }^{1}$

MA 153 Elements of Linear Algebra4
MA 561 Probability ${ }^{5}$
OR 601 Intro. to Digital Computing
OR 608 Statistics
OR 627 Oper. Res.: Deterministic Models ${ }^{4}$
OR 628 . Oper. Res.: Stochastic Models ${ }^{4}$
B. Required Courses . 9 units

IE 600 Engineering Economlc Analysis
OR 631 Linear Programming
OR 650 Queuing Systems I
C. Major Electives: ${ }^{2}$ Select 4 12 units

IE 611 ? Statistical Ouality Control
OR 685 Reliability I
OR 614 Modig. of Social Systems I
OR 680 System Simulation I
networks. Applications include production-inventory problems, plant location-allocation problems, regional transporiation and traffic assignments, manufacturing processes. Prerequisites: MA 561 and either OR 627 or OR 631.
Also lifisted under IE 636

OR 650 Queving Systems]
 21/2:0:3

Development of elements of queuing and loss theory. Single and multiple servers, Markovian and non Markovian artival and service time distributions, various queue disciplines. Applications to inventory control, maintenance, transportation, communication. Model building and basic solution techniques stressed rather than formal theoretical development. Prerequisite: OR 608.

OR 851 Queuing Systems II*

21/2:0:3
Appitications of queuing theory with emphasis on communications and vehicular traffic. Customer behavior, switching networks, overflow traffic, alternate routing, feedback, priorities, control. Formulation of standards based on cost-benefit viewpaint. Prerequisite: OR 650 or MA 815.

OR 665 Microeconomic Models

21/2:0.3
Utility theory and decision-making under risk and uncertainty. Demand analysis and pricing in classical theory of the firm under various economic environments. Production functions. Linear programming and the firm. Analysis of shon-run costs. Capital investment and analysis under capital rationing: deterministic and stochastic models. Prerequisites: SA 607 and either SA 627 or SA 631 or permission of instructor.

OR 686 Macroeconomic Models

21/2:0:3
Measures of economic activity, national income accounting. Input-output analysis, Leontief's static model, inter-industry relationships, applications to regional planning, economic forecasting and environmental problems. Dynamic models and growth, modeis of national economy. Portfolio selection. Prerequisites: MA 561 and either OR 627 or OR 628.

OR 671 Business and Economic Forecasting
 21/2:0:3
 Forecasting for managerial decision control. Statistical vs.

 judgmental methods. Smoothing and analyses of trends, seasonal factors, cycles and random variations. Econometric forecasting. Economic indicators and sources of information. Applications to the national economy, industry sales, corporate profits, financiai institutions, government expenditures, etc. Prerequisite: OR 608.Also listed under MG 671

OR 673 Tlme Serles: Forecasting and

 Control21/2:0:3
Strict and weak stationarity. Autocorrelation and correlogram. Moving average (MA), autoregressive (AR) and mixed ARMA processes. Nonstationarity and integrated ARIMA processes. Box-Jenkins' approaches to problems of identification, estimation, diagnostic checking and forecasting. Spectral theory and the periodogram. Adaptive methods. Feedback and feed forward controls. Applications to management and planning. Prerequisite: OR 608.

OR 874 Econometric Models and Methods*
21/2:0.3
Single equation estimation vs. simultaneous-equation systems estimation. Regression techniques. Instrumental and lagged variables. Problems of identification in simultaneous-equation methods. Two-stage, three-stage and fimited information estimation. Applications to macroeconometric models, economic systems structural analysis, short-term and long-term fore casting, etc. Prerequisite: OR 608.
Also listed under SS 713

OR680 System Simulation I
21/2:0:3
Modeling and simulation of discrete stochastic systems. Generation of pseudorandom numbers, variates from discrete, continuous, theoretical and empirical distributions. Extensive study of SIMSCRIPT, introduction to other languages. Students program, code and run several simulation models. (Not open to students who have taken IE 380.) Prerequisites: OR 601 and MA 561 or instructor's permission.
Also listed under IE 680
OR681 System Simulation ll*
21/2:0:3
Advanced concepts of discrete simulation. Statistical aspects of simutation design, run length, efficiency. Methods for generation of nonuniform random variables, including probability integral transform, rejection, composition techniques. Monte Carlo variance reducing techniques, including importance sampling, control variates and antithetic variates. Application to physical problems. Prerequisites: OR 608 and $O R$ 680.

Also listed under IE 681

OR 685 System Relfability
21/2:0:3
Structural reliability, redundancy, bounds on reliability of complex systems. Repairable systems: Markov models, maintainability and availability. Optimization of spare parts inventories, inspection intervals and replacement times. Failure models: accumulated shocks and stress-strength-time. Marginal failures, dependent failures. Prerequisite: MA 223 or MA 561 or equivalent.

Also listed under EL. 617 or JE 685

OR 686 Component Relliability $\quad 21 / 2: 0: 3$
Failure models for industrial components: exponential, Weibull, lognormal, gamma, Gumbel and other distributions. Failure and hazard rates, graphical probability plots and maximumlikelihood parameter estimation and testing. Sampling plans based on life tests and accelerated life tests. Serial and paraliel analysis on components rellability. Prerequisite: MA 223 or MA 561 or equivalent.
Also listed under EL. 618 and IE 686

OR700 System Effectiveness*
21/2:0.3
Evaluation methodology in system analysis for decisionmaking process in selection of preferred solutions from set of competing alternatives. Discussions center on origin and need of performance effectiveness, requirements and criteria, basic concepts, models, applications to real-world problems, computer methods. Prerequisites: OR 601, OR 627 and OR 628, or instructor's permission.
Also listed under IE 700
OR 720 Optimum Seeking Methods* $21 / 2: 0.3$
Algorithm construction and applications of computer-implemented search procedures. One-dimensional searches, including Fibonacci and golden section search, quadratic and cubic convergent search. Muitivariate methods, including gradients, conjugate directions and variable metric (e.g., DFP) methods. Constraints, penalty functions, SUMT. Sensitivity, convergence and program efficiency. Prerequisites: OR 601 and either OR627 or OR 631
Also listed under IE 720

OR 727 Case Studies in Management Science*

21/2:0-3
Application of scientific and analytical methods of solving management decision-making problems drawn from current practice and literature. Prerequisites: OR 627 or OR 631 and OR 628 or OR 650.
Also listed under IE 727 and MG 727

OR 730 Mathematical Economics*

21/2:0:3
Contributions of mathematical analysis to traditional economic problems. Review of basic mathematical tools. Multiplier and accelerator models, economic stabilization, capital theory, economic growth, static equilibrium, individual behavior, welfare economics and subjects of special interest to students. Prerequisite: OR 665 or instructor's permission.
Also listed under SS 730

OR 778 Advanced Production Planning

21/2:0:3
Quantitative analysis of aggregate planning models using optimal, heuristic and search decision rules. Explosion and netting models for material and resource requirements. Algorithms for scheduling manpower for continuous operations. Selected topics in operational planning from recent sesearch literature and assigned independent study. Prerequisite: OR 619.

Also listed under IE 778

OR 846 Utban Systems Analysis*

21/2:0:3
The overall urban system. Modeling for prediction and management of major components: population, economy, land use, transportation network, facility location, governmental service systems. Cost-benefit viewpoint in social welfare context. (Not open to students who have taken IE 346 except with instructor's permission.) Prerequisite: OR 627 or TR 837 or equivalent.

Also listed under [E 846

OR851 Stochastic Processes

$21 / 2: 0: 3$
Random variables and stochastic processes. Moment generating and characteristic functions. Conditional expectations. Homogeneous and nonhomogeneous Poisson processes. Waiting and interarrival times. Fenewal processes. Integral equation, age and excess life. Discrete parameter Markow chains. Classification and decomposition. Continuous parameter Markov chains. Backward and forward differential equations. Birth and death processes. Applications to business, industry and sciences. Prerequisite: MA 561.

OR 852 Applied Regrassion and Analysis of Variance

21/2:0:3
Analysis of observed data by means of regression and analysis of variance and covariance. Systematic treatment of analysis of multiple classifications involving fixed and random effects and crossed and nested variables of classification. Regression analysis and its relation to analysis of variance. Prerequisites: MA 153 and OR 608.
Also listed under IE 852

OA 853 Design of Experiments

21/2:0:3
Basic designs for scientific and industrial experiments: singlefactor and muftiple-factor compietely randomized designs, randomized blocks, incomptete blocks, orthogonal contrasts, general regression approach, Latin and higher squares, quantitative factors-orthogonal polynomiais, complete and tractional factorial experiments including confounding methods. Introductions to statistical packages: SPSS and BMDP. Prerequisite: OR 608.
Also listed under IE 853

OR 870 Games and Decisions

21/2:0:3
Rectangular games and strategies, payoffs, values and the minimax theorem. Continous games. Relationships to linear programming. Statistical decision functions. Bayes, minimax, admissible and complete class of decision functions. Behavioral decision models and bounded relationality. Utility and choices. Group decisions and multiple objectives. Applications to statistics, managerial decisions and public affairs. Prereq. uisite: OR 608.

OR 911-912 Selected Topics in Operations
Research 1, II*
*ach 21/2:0:3
Lectures beyond areas covered in other courses. Specific topics vary accilding to instructor, who may be visiting professor. Topics and prerequisites announced during term prior to offering.

OR 920 Research Seminar in Operations Research and Industrial Engineering*

2112:0:3
Examination of selected advanced topics at research frontiers of department's graduate program areas. Presentations by graduate students, faculty, visiting scientists. Prerequisite: candidacy status for a graduate degree.

Also listed under IE 920

OR 930-931 Readings in Operations
Research [, II
each 3 units Individual reading of selected papers and current literature in specialized area of study, guided by faculty member. Prerequisites: approval of adviser, instructor and department head.

OR 935 Engineering Projects Reiated to Public Administration
each 3 units Original investigation on topic chosen by student. Conferences and progress reports requited during work, and tinal written report required at completion; oral examination may be requested by department. Aegistration and degree credit beyond first six units require separate approval. Prerequisites: degree status and approval of supervising professor, adviser and department head.

OR 997 Thesis for Degree of Master of Science
 each 3 unlits

Original investigation on topic chosen by student. Conferences and progress reports required during work, and final written report required at completion; oral examination may be requested by department. Registration and degree credit beyond first six units require separate approval. Prerequisites: degree status and approval of supervising professor, adviser and department head.

OR 989 Dissertation for Degree of Doctor of Philosophy

each 3 units Doctora! dissertation must give evidence of and embody results of extended research in specific field of operations research, constituting original contribution. Candidate required to take oral examination on subject of thesis and on related topics. Minimum of 24 units required. Prerequisites: completion of qualifying examination and guidance committee's approval.

The following courses listed under industrial engineering are also considered in-program courses for operations research:

IE 600 Engineering Economic Analysis
IE 606 Work Design and Measurement
IE 611 Statistical Quality Control
IE 612 Advanced Quality Control
IE 716 Commercial Data-Processing System Design
IE 765 Human Factors in Engineering Design
IE 775 Industrial Safety Engineering
IE 776 Material Requirement Planning
IE 777 Marufacturing Improvement Curves
IE 779 Advanced Work Systems Design

FACULTY

Nobert Hauser, Professor of Industrial Engineering and Management Science and Dean of Management B.M.E., Cooper Union; M.I.E., Eng.Sc.D., New York University
Modeling of social systems, compufer simulation, quality control

John T. Chu, Professor of Operations Research B.S., University of Chekiang (China); M.S., Ph.D., lowa State University
Managerial decisions, behavioral approaches, national and international problems

Walter Helly, Professor of Operations Research B.A., Cornell University; M.S., University of Illinois; Ph.D., Massachusetts Institufe of Technology Urban systems, stochastic modeling, vehicular traffic

John H.K. Kao, Professor of Industrial Engineering B.S., National Central University (China); M.S., D.Eng.Sc., Columbia University

Applied statistics, quality control and reliability, operations research in nuclear engimeering

Joachim I. Weindling, Professor of Operations Research and System Engineering, and Director of Operations Research Program
B.M.E., City College of New York; M.S., Ph.D., Colum-
bia University; Professional Engineer (N.Y., PA.) Mathematical programming, optimum design, economic evaluation

Herman Grau, Associate Professor of Industrial Engineering
B.M.E., Polytechnic Institute of Brooklyn; M.I.E., New York University
Methods, work measurement, industrial management, project management

Seymour Kaplan, Associate Professor of Operations Research and Director of Economic Systems Program B.S., Newark College of Engineering; M.S., Ph.D., New York University Economic modeling, linear programming

Ravinder Nanda, Associate Professor of Industrial Engineering, and Director of Industrial Engineering Program
B.S., Banaras Hindu University (India); M.S., Ph.D., University of Illinois
Production planning, operational control systems, facility location and layout
A. George Schillinger, Associate Professor of Management and Operations Research
B.E.E., C.C.N.Y.; M.S., Eng.Sc.D., Columbia University Technology management, policy studies, stochastic systems

ADJUNCT FACULTY

Geoffrey Gordon, Adjunct Professor
B.Sc. (Physics), B.Sc. (Mathematics), M.Sc.
(Mathematics), University of London (England)
Samuel Gorenstein, Adjunct Professor
B.B.A., City College of New York; Ph.D., New York University

Peter M. Meier, Adjunct Professor
B.S., Swiss Federal Institute of Technology (Zurich);
M.Sc., Ph.D., University of Massachusetts

Arnoid Ockene, Adjunct Professor
B.E.E., City College of New York; M.S., Columbia University

Lawrence W. Parks, Adjunct Professor
B.S., M.S., Ph.D., Polytechnic Institute of New York

Robert Marose, Adjunct Assistant Professor
B.S., University of Notre Dame; M.S., Stevens Institute of Technology; Ph.D., Polytechnic Institute of New York

Andrew Sipos, Adjunct Assistant Professor Engineering Dipioma, Technical University, Budapest; M.S.C.E., University of Pennsylvania (P.E.)

Moira LeMay, Adjunct Associate Professor B.S., Queens College of City University of New York; M.S., Ph.D., PennsyIvania State University

Young W. Yoon, Adjunct Associate Protessor B.A., Yonsei University; M.B.A., New York University; Ph.D., Polytechnic Institute of New York

Michael P. London, Lecturer B.S., M.S., New York University

Martin Stemberg, Lecturer
B.S., Polytechnic Institute of New York

PHYSICAL EDUCATION

The major goal of the required physical education program is to educate and interest students in a wide variety of physical activities so they may develop skill and success while experiencing an optimum condition of physical fitness in terms of strength, speed, agility and endurance. The program teaches skills in interesting lifetime sports: tennis, golf, badminton, etc., and gives the students healthful activities that may be pursued with family and friends.

Athletics

The student athlete attending Polytechnic may compete in a far-reaching intercollegiate athletic program that encompasses every phase of sport. All full-time undergraduate students in good academic standing are eligible to try out for positions on the seven varsity teams that carry the blue and white colors of Polytechnic in N.C.A.A. competition. Intercollegiate sports are baseball, basketball, cross-country, fencing, soccer, tennis and wrestling.

Intramurals

Intramural sports enjoy substantial success at Polytechnic. All students, both undergraduate and graduate, are eligible for competition in badminton, basketball, football, tennis, handball, hockey, paddieball, softball, volleyball and wrestling. Winners of the intramural basketball and volleybail tournaments compete in the tristate area college intramural championships.

PHYSICAL EDUCATION COURSES

The department's aim is to provide a sound program of instruction and participation for all students in physical education.

Each undergraduate student is required to complete four semesters of physical education in any of the following course offerings.

PE 101 Team and Lifetime Sports
0:2:0
Fundamental conditioning exercises, basic skills and strategy needed while participating in team and carry-over sports, volleyball, basketball, soccer, tennis, badminton, softball, footbalt, handball, paddleball and golf.

PE 102 Cardiopulmonary Resuscitation and Welght Training
$0: 20$ This course is divided into one hour a week of CPR where the students witl learn principles and techniques of how to maintain breathing and circulation in a victim suffering from cardiac arrest. In the second hour each student participates in an individual weight-training program.

PE 103 Disco Dance
Theory and application of popular dance techniques.
PE 104 Weight Training
$0: 20$
Individual weight-training prograrss developed to produce increased strength and endurance through the use of isotonic and isometric exercises.

FACULTY

Joseph Martini, Director of Physical Education and Athletics
B.S., Long island University; M.S., Brooklyn College

Edward J. Collins, Instructor
Marilyn Washington, instructor
B.S., Long Island University

Louis Zinser, Instructor
B.S., University of Baltimore; M.S., Hofstra University

PHYSICS

Physics is the basic science of the natural world-the science of matter, energy and motion. It is indispensable in the preparation for any engineering or scientific career.

The training of physics majors at both the undergraduate and graduate leveis is basic and general. This broad training makes them less subject to the risks of obsolescence produced by the rapidity of technological change in modern life. The curriculum is designed to provide a background for careers in industry, government and education. Some physicists go into university teaching and research when they have completed their graduate education. Others go into science teaching at any one of many different levels. And physics graduates at all levels are employed in private industry, government agencies and research foundations for fundamental research and engineering. In addition, training in physics serves as valuable preparation for a great variety of science-based or science-connected careers.

Besides the very active field of solid-state and nuclear physics, other general areas in which physicists are now employed are the radio/television and electronics industry, the chemical industry and the fields of biophysics, space science and medical physics.

The Department of Physics grants the degrees of bachelor of science, master of science and doctor of philosophy in physics.

UNDERGRADUATE PROGRAM

The aim of the four-year undergraduate program in physics is to prepare students thoroughly for any one of the many careers for which a concentration in physics forms the base. For the majority of students, this means preparation for graduate school and further study leading to the master's or doctor's degree. For many others, it means professional work in industry, government or in high school teaching. In addition, some students use their major in physics as preparafion for work in other fields such as mathematics, chemistry, biology, medicine, engineering, law, history of science, writing or business.

Our program's emphasis on fundamental knowledge, on thorough analytic training and on the universal logic of science enables our physics students to take these different paths.

The structure of the undergraduate program is fourfold: formal instruction in the sciences, instruction in humanities and social sciences, informal instruction and additional activities.

Formal instruction in the sciences is described by the program of courses. This program includes-after the freshman year with its beginning courses in physics, chemistry and mathematics-a spiral sequence of courses in the three broad areas of mechanics, elec. tromagnetic theory and modern physics, matched at each level to the student's increasing mathematical maturity. With this background, a senior is ready for theoretical physics and electives in solid-state, x-ray or nuclear physics or in quantum theory. Specialized courses, such as optics, thermodynamics, computing and electronics are required, and additional courses in mathematics, chemistry or life sciences may be elected.

Instruction in the humanities and social sciences is built around the thirty-two credit hours of courses in the humanities and social sciences required of all physics majors. Our department urges its students to choose additional courses in these areas. We believe that the natural curiosity that brought students to choose physics as a major should also be stimulated in other areas of intellectual activity, such as literature, psychology, poetry, music, economics and history.

Informal instruction accompanying the formal course work takes a varlety of forms. Each student meets regularly with members of the physics faculty in informal conferences to discuss the student's work, review problems or talk physics.

All physics freshmen take a seminar on current advances in physics. All seniors participate in another seminar. In both seminars, students prepare talks on aspects of advanced topics in physics and present them to the critical audience of their peers and professors.

Many students spend some time in research, either assisting in the various research programs carried on by the facuity or working on a relatively independent research project assigned after consultation with a guidance professor. Undergraduate participation in research alongside graduate students and protessors is becoming so important that it will probably soon enter the department's formal educational structure. A number of juniors and seniors in the physics department now spend ten weeks each summer in such fulltime research activity. Opportunities for guided research during the academic year also exist.

The department offers the opportunity for individual reading and advanced study under protessorial guidance and will accept satisfactory performance in a regutar course examination as fulfillment of a course requirement.

Physics students have at their disposal a common study area in which they meet with other students for shop talk, for problem-solving and for the exchange of ideas.

Information about advanced placement of freshmen is on page 13.

Additional activities, in which all physics students are urged to participate, include the programs organized by the Physics-Math Society by the chapter of Sigma Pi Sigma (the physics honor society), and by the local student chapter of the American Physical Society. Here the students listen to and meet speakers on various topics and participate in trips to industrial and government laboratories. Undergraduates are encouraged to come to the regular research colloquia where invited scientists discuss the latest advances in physics. They also attend meetings of the American Physical Society and other professional societies associated with the American Institute of Physics.

By means of these activities and through the structure of the department, students have a wide range of opportunities for interacting with their professors, their fellow students and with the world of physics. We believe that such interaction, leading to a college experience built around sfudying physics, talking physics, thinking physics and doing physics, is the most valuable preparation for any career in physics. We also feel that this blending of experiences leads to real appreciation of the intellectual impact of physics and to an understanding of why so many of mankind's important thinkers have been attracted to physics and have added to its accomplishments.

REQUIREMENTS FOR THE BACHELOR OF SCIENCE

The program requires 128 credits, inciuding 46 credits of required courses in physics. The remaining credits are distributed among required technical courses, required humanities, social sciences courses, a foreign language requirement and restricted and free electives. (See "Typical Course of Study" on the following page.) The distribution is as follows:

PH 101-103, 111, 210, 232, 240, 303-304
313-314, 321, 335-336, 343, 390
Credits

CM 101, 102, 111, 112, 180, EE 370, 374
MA 101-104, CS 11.1
HU 101, 200, SS 104 or IS 140,141
30

Electives (7MA, 3PH, 11 Hurn./Soc. Sci.) 12
21
Free electives

Required Physies Courses: The course format of the required courses may be lectures, recitations or guided reading. Any substifutions require the permission of the undergraduate adviser.

Electives: Elective courses are to be chosen in consultation with the departmental adviser. Seven elective credits must be in mathematics and three in physics. The remaining electives are free.

GRADUATE STUDY

The Department of Physics prepares properly qualified graduates for careers in research and college teaching, granting the M.S. and Ph.D. degrees in physics. It offers a program of advanced and special. ized education in theoretical and experimental physics with concentrations in particular fields of physics, emphasizing early participation in seminars and research. Programs of research are carried on which aim to extend the knowledge and techniques in particular fields of specialization.

A special formal program in chemical physics, des. cribed below, and a master's program having emphasis 4 in energy policy are also given.
'In addition, the Department of Physics participates in a cooperative program with the New York University's Graduate School of Public Administration, leading to the joint degree of master of science in physics and master of public administration.

Areas of current theoretical research are primarily in solid-state physics and statistical mechanics within the theoretical condensed matter group, and also include field-matter interactions, image restoration and nuciear theory. Our major experimental research programs are in the fields of solid-state physics, x-ray physics, radiation physics, quantum optics, surface physics and medical physics. Each of these is centered in well-equipped laboratories with modern facilities. The department maintains a large facility for surface and thin films preparation, and is serviced by a precision machine shop. The x-ray diffraction laboratory, one of the largest, ailows the full range of techniques for crystal structure analysis and has unique facilities for multiple beam interferometric interactions at high resolution.

The importance of the informal aspects of physics education, already stressed in the discussion of the undergraduate program, is carried over fully into our approach to graduate training. There is much interaction between students and faculty. Outstanding students are advised to apply for financial aid in the form of research fellowships, teaching fellowships or partial tuition remission.

Typical Course of Study for the Bachelor of Science Degree in Physics

Freshman Year

First Semester		Hours/Weak		
No.	Subject	CI.	Lab.	Cr.
CS 111	Introduction to Computing	3	0	3
	Hum./Soc. Sci. electiveh	6	0	6
MA 101	Calculus I	4	0	4
PH 101	Introductory Physics I	3	0	3
PH 111	Freshman Semninar in			
	Current Physics	1	0	1
PE 101	Physical Education	0	2	0

Second Semester			Hours/Week	
No.	Subject	CI.	Lab.	Cr.
CM 101	General Chemistry I	$21 / 2$	0	$21 / 2$
CM 111	General Chemistry Lab I	0	$11 / 2$	$1 / 2$
	Hum./Soc. Sci. electiveh	6	0	6
MA 102	Calculus If	4	0	4
PH 102	Introductory Physics II	$31 / 2$	$11 / 2$	4
PE 102	Physical Education	0	2	0
				17

Sophomore Year

CM 102	General Chemistry II	$2^{1 / 2}$	0	$21 / 2$
CM 112	General Chemistry Lab II	0	$11 / 2$	$3^{1 / 2}$
	Hum./Soc. Sci. elective	3	0	3
MA 103	Calculus III	3	0	3
PH 103	Introductory Physics II	$21 / 2$	$11 / 2$	3
PH 210	Elementary Mechanics	3	0	3
PE 103	Physical Education	0	2	0
				15

MA 104	Applied Differential Eqs.	3	0	3
PH 232	Intro. to Modern Physics	$21 / 2$	$11 / 2$	3
PH 240	Optics	3	0	3
EE 370	Princ. of Electrical Eng.	3	0	3
	Hum./Soc.Sci. elective	3	0	3
EE 374	Instrumentation Lab	0	3	1
PE 104	Physical Education	0	2	0
				16

Junior Year

PH 303 Physical Meas. $1 \quad 1 \quad 3$
PH 335 Atomic \& Nuclear Physics : Hum.Soc. Sci. electiveh ${ }^{\text {h }}$ Electives

1	3	2
3	0	3
3	0	3
0	0	8

Senior Year

PH 313	Intro. to Theo. Phys. I	3	0	3
PH 343	Thermodynamics \& Kin, Theo.	4	0	4
	Hum_/Soc. Sci. electiveh	3	0	3
	Electives	0	0	$\frac{6}{16}$

PH 304	Physical Meas. II	1	3	2
PH 321	Electricity and Magnetism	4	0	4
PH 336	Atomic \& Nuclear Physics II	3	0	3
	Hum./Soc. Sci. elective ${ }^{h}$	3	0	3
	Electives.	0	0	$\frac{3}{15}$

CM 180	Structural Chem. for			
	Physicists	3	0	3
PH 314	Intro. to Theo. Phys. II	3	0	3
PH 390	Senior Seminar	2	0	2
	Hum./Soc. Sci. elective ${ }^{\text {h }}$	5	0	5
	Electives	0	0	$\underline{3}$
				16

Total credits required for graduation: 128

IIn the humanities and social sciences, the student is to fulfill the following minimum 32-credit requirements:

1. Pequired courses ($\mathbf{2 1}$ credits) $\mathbf{H U} 101$ and either HU 200, SS 104, or IS 140, 141 (9 credits)
ML 1×1 through 1×4 (12 credits)
The modern language requirement must be satisfied in German, French or Russlan. Based on performances in prior language studies, the language requirement may, with approval of the Department of Physics, be replaced by other humanities or social sciences electives.

2 Elective courses (11 credits)
The student is strongly urged to select two or three courses from an area of concentration such as: literature, communications, the arts, philosophy, comparative religion, political science, economics, history, anthropology or psychology. Electives are chosen with the adviser's approval.

REQUIREMENTS FOR THE MASTER'S DEGREE

For admission to graduate study in physics, a bachelor's degree in physics is assumed with preparation equivalent to intermediate or advanced courses in mechanics, electromagnetic theory, optics, thermodynamics and atomic physics (including wave mechanics). Applicants with a degree in physics of dizferent emphasis or in other fieids may be admitted with undergraduate deficiencies if approved by the deparimental adviser.

All applicants are required to take the Graduate Record Examination.

The program of study for the degree of master of science in physics offers three options, each requiring 36 units. One option, including early formal research, consists of a 12 -unit thesis (PH 999) and 24 units of required and elective courses. In another option, candidates with suitable research experience may substitute a six-unit project (PH 999) and six additional electives for the 12 -unit thesis. The project requires a literate and critical discussion of the current status of a specialized area of research. Either thesis or project is completed by a satisfactory defense in an examination. The third option does not include a thesis but emphasizes a strong formal training in courses.

The arrangements for a thesis or project and the choice of elective courses require approval of the departmental adviser.

The detailed program of study for the degree of master of science in physics is given in tabular form below. Students offering the equivalent of any required courses may substitute additional units of electives.

No.	Subject	Units
PH 901-902	Physics Colloquium I , fl	None
PH 953-954	Graduate Seminar I, 11	3
PH 667	Quantum Mechanics I	3
PH 999	Thesis (12 units) +18 elective units	
or		
PH 999	Project (6 units) +24 elective units	30
or	30 elective units	
	Total	36

REQUIREMENTS FOR THE DOCTOR'S DEGREE

The requirements for the Ph.D. in physics conform to the general regulations. A major and one minor course sequence are required. The major offering consists of 54 units in physics. The minor of 18 units may be taken in such fields as mathematics, chemistry or electrical engineering. With permission of the department and the candidate's guidance committee, a limited number of graduate course credits in the history and philosophy of science may be offered to satisfy the major requirements.

The doctoral candidates must pass both written and oral qualifying examinations for which they should register with the approval of the department. The candidates may then ask for the appointment of a guidance committee and the formalization of the dissertation topic and adviser. Note that if doctoral research is continued in the same area of specialization as the M.S. thesis, credits will usually be transferred toward the Ph.D. research requirement. About three months before completion of the dissertation, a doctoral candidate submits a written summary of work to the department and is examined on the general area of the dissertation in a precis examination by the guidance committee. The candidate must also demonstrate a reading knowledge of German, Russian or French. Details on examination content and regulations may be obtained from the department.

CHEMICAL PHYSICS PROGRAM

(See page 57.)
Chemical physics is an interdisciplinary program designed to train students for careers in those areas common to chemistry and physics. Jointily administered by the Departments of Chemistry and Physics, it provides, within the scope of a normal graduate program, an unusual overlap of studies, emphasizing those aspects which are closely related to both fields.

UNDERGRADUATE COURSES

PH 091-092 Concepts of Contemporary
 Physics I, 1t*

each 3:3:4
Introductory course, including topics in both classical and modern physics. Emphasis on development of physics as a dynamic cumulative process through the interplay of experiment and theory. Prerequisites: MA 091-092.

PH 101 Introductory Physics I
3:0:3
Development of the dynamics of particies and systems of particles within the general principles of symmetry and the conservation laws of physics. Prerequisite: MA 101.

PH 102 Introductory Physics II $31 / 2: 1^{1 / 2}: 4$ Continuation of PH 101. Thermodynamics and kinetic theory of gases. Electromagnetic fieids and forces and their interactions with particles. Principles and instzuments of classical and modern measurements. Lab fee required. Prerequisites: PH 101 and MA 102

PH 103 introductory Physics III
21/2:11/2:3
Continuation of PH t02. Propagation of waves, particularly as iliustrated by the study of physical and geometrical optics. Lab fee required. Prerequisite: PH 102.

PH 111 Freshman Seminar in Current Phystes
Analysis and discussion of selected topics of current interest in physics emphasizing concepts and the underlying framework of physical understanding. Topics are discussed from various areas of current research such as astrophysics, atomic and nuclear physics, the solid state and biophysics. Lectures and discussion. Readings in literature. Visiting scientists.

Statistics by virtual work and potential energy methods. Stabili-

Inventory Models

OR 674 Econometric Models \& Methods
OR 851 Stochastic Processes
OR 852

Economic Systems

Requirements for the Master of Science degree:
A. Basic Required Courses'

IE 600 Engineering Economic Analysis
MA 153 Element's of Linear Algebra ${ }^{4}$
MA 561 Probability ${ }^{5}$
OR 601 Intro. to Digital Computing
OR 608 Statistics ${ }^{6}$
OR 627 Oper. Res.: Deterministic Modets ${ }^{4}$
B. Required Coúrses . 9 units

OR 665 Microeconomic Models
OR 666 Macroeconomic Models
OR 674 Econometric Models \& Methods
C. Major Electives: Select 4 12 anits

MG 700 Managerial Accounting
OR 614 Modeling of Social Systems I
OR 628 Oper. Res.: Stochastic Models
OR 631 Linear Programming
OR 671 Bus. \& Econ. Forecasting
OR 673 Time Series: Forecasting \& Control
OR 852 Applied Regression \& ANOVA
D. Other Relevant Electives ${ }^{3}$. 15 units

Minimum Total 36 units

DOCTOR OF PHILOSOPHY DEGREES

The Division of Management offers programs leading to the degrees of doctor of philosophy in the major areas of operations research and economic systems.

The general Polytechnic requirements for the doctor of philosophy degree are stated in this catalog under Degree Requirements. Specific requirements for each of these doctoral programs may be found in the division's doctoral brochure.

Entrance to a doctoral program is contingent on passing the program's qualifying examination. This will consist of the Part I preliminary written examination and the Part il major field written examination; an oral examination may also be required. An examination in one foreign language is required, ordinarily French, German or Russian.

The doctoral program requires a minimum of 90 units beyond the bachelor's degree, including a minimum of 24 units of dissertation; no more than 30 units of dissertation may be counted in the minimum total.

After passing the written qualifying examination the candidate will select a thesis adviser and prepare a formal proposal for the dissertation research. A thesis committee will be appointed to judge the merit of the proposed research. After approval of this proposal, the doctoral candidate shall register for research. On completion of the dissertation, the candidate must pass an examination in its defense.

CERTIFICATE PROGRAMS

The division offers several certificate programs designed for the protessional with work experience. A certificate program requires five courses which are selected in line with the needs of the individual. Applicants for a certificate program must hold a bachelor's degree. On completion of the sequence with a B average or better, the individual is issued a certificate. Students who choose to work toward a master's degree are able, on admission, to apply all courses taken toward a certificate to the degree program. Additional information may be obtained from the division.

UNDERGRADUATE COURSES

All undergraduate courses in operations research are listed under Industrial Engineering.
'Alt group A courses are required untess they are specificaily waived by the adviser because the student either (a) has taken an equivaient undergraduate or graduate course, or (b) passes a validation examination for the course. Up to three group A courses actually taken may be credited toward the degree requirements; if more than three must be taken, the degree requirements will be increased accordingly.
${ }^{2}$ Only one of each bracketed pair of courses will be counted in the group in which it is listed; the other courses may be counted under group D.
'Group D electives are to be chosen with the adviser's approval to bring total units to 36 plus any excess of Group A courses beyond 9 units. They may include thesis, additional courses from Groups B and C, or other graduate courses in this or other departments. Because of substantial overlap
with OR courses, no credit will be given for MG 630 , MG 602, and MG 605 .

Certain introductory courses will be waived if the student takes specified advanced courses, for which fuil credit will be given.
For OR 627: OR 631 and either OR 632 or OR 665
For OR 628: OR 650 and either OR 618 or OR 619
For MA 153: MA 703 or MA 837 or MA 838
'Students who have not had a full course in probabiltity are urged to take MA 561 or an equivalent course during the summer preceding their first term.
*Students who have not had a full course in statistics ape urged to take OR 608 or an equivalent course during the summer preceding their first term.

GRADUATE COURSES

OR 601 Introduction to Digltal Computing
21/2:0:3
First course in computing, concentrating on analysis of problems for computer solution. Organization and characteristics of computers. Structure and properties of algorithms and programs, flow charting. Debugging and verification, documentation. Numrber systems, data representation, numerical error analysis. FORTRAN IV language used. (Not open to students who have taken CS 101 or equivalant.)
Also listed under CS 531 and IE 601
OR 808 Statistics
21/2:0:3
Estimation, confidence limits, tests of hypothesis, regression analysis. Applications to engineering problems. (Not open to students who have taken MA 224.) Prerequisite: MA 561.
Also listed under MA 562
OR 614 Modeling of Social Systems 1
21/2:0:3
Social systerns viewed as interrelated positivetand negative feedback loops whose behavior is governed by structure, amplification and delays. Using the DYNAMO language, students prepare, analyze and restructure several models in ecology, management, economics or related areas individually chosen. (Not open to students who have taken IE 314.) Prerequisites: knowiedge of calculus and computer programming.
Also listed under iE 614
OR 815 Modeling of Social Systems If*
21/2:0:3
Continuation of OR 614, with greater emphasis on underlying theory. More complex systems are analyzed, and control algorithms are designed and tested to improve performance. Prerequisite: OR 614.
Also listed under IE 615
OR818 Inventory Models
21/2:0:3
Study of inventory systems. Deterministic and probabilistic models. Fixed versus variable reorder intervals. Dynamic and multistage modeis. Statistical forecasting of demands and lead times. Control of dynamic inventory systems with lead times. Prerequisites: MA 561 and either OR 627 or OR 631.

Also listed under IE 618

OR 618 Production Planning and Control

$2^{1 / 2}: 0: 3$
Analytical techniques for designing and operating production systems. Assembly line balancing, job sequencing, inventory control, project planning with PERT and CPM. Applications of linear programrning aigorithms to shop loading and production scheduling of single and multiple products. (Not open to students who have taker IE 319 or equivalent.) PTerequisite: OR 627 or OR 631.

Also listed under IE 619
OR 620 Profect Planning and Control* $\quad 21 / 2: 0: 3$
Natwork planning and techniques for project management and resource allocation. Emphasis on PERT, LOB, CPM and probabllistic generalized networks. Heuristic models for multiproject scheduling and rasource leveling. Other topics include network development, computer adaptation, progress reports and project monitoring.(Not open to studerte who have taken IE 320.) Prerequisite: knowledge of computer programming.

Also listed under IE 620 and MG 810

OR 621 Facility Layout and Locafion*
 21/2:0:3

Development of quantitative models for anaiysis of facillty layout and location problerns. Solutions by both mathematical optimization and heuristic algorithms. Location of single and multiple facilitlee in existing and new layout design. Other topics include computerized layout planning, minimax location and discrete vs. continuous location planning. (Not open to students who have taken IE 321.) Prerequisite: OR 627 or OR 631.
Also listed under IE 621

OR 624 Computer-Augmented Case Studies in Management Sclence
$21 / 2,0.3$
Cases involving problems in forecasting, inventory, scheduling, line balancing, maintenance, queuing and in similar industriat engineering and operations research disciplines are assigned. Students may write their own computer programs or may use existing packages to analyze the cases and design improved atternatives. Written reports are sequired. Prerequisites: IE 600 , OR 627 and OR 628.
Also listed under IE 624
OR 627 Operatlons Research: Deterministic Models
$21 / 2: 0: 3$
Development of mathematical models for solving decision problems of deterministic nature. Classical optimization, Lagrange muitipliers. Linear programming, transportation method, network procedures, games. Dynamic programming. (Not open to students who have taken IE 327 or equivalent.) Prerequisite: calculus.

OR 628 Operations Research: Stochastic Models

21/2:0:3
Mathematical models for solving decision problems of stochastic nature. Queuing. Markov processes, inventory models, reliability, dynamic programming. OR 628 and OR 627 constitute standard one-year survey course in operations research.
 Prerequisite: MA 561.

OR631 Linear Programming
21/2:0:3
Theory and application of linear programming techniques. Simplex and revised simplex algorithms. Duality theory, dual simplex method, postoptimality analysis. Degeneracy. Transportation and assignment problems. Applications, problem formulation, computer solutions. Prerequisite: MA 153.

Also listed under MA 813

OR 832 Nonlinear Programming*
21/2:0:3
Optimization of nonlinear functions. Classical methods. Constraints and Lagrangian methods.,Duality and economic interpretation. Separable programming, feasible directions, gradient projection. Quadratic and convex programming. Industrial and engineering applications. Prerequisite: OR 631.
Also listed under MA 818
OR 833 Integer Programming*
$21 / 2=0: 3$
Solution techniques for integer and mixed-integer linear programming problems. Cutting plane methods, zero-one programming, branch and bound methods. Surrogate constraints. Quadratic programming. Applications to combinatorial analysis. Prerequisite: OR 631.
Also listed under MA 814
OR 634 Dynamic Programming*
21/20:0:3
Application of principle of optimality to solution of deterministic and stochastic systems as multistage decision prooesses. Relationship to variational methods. Nonserial problems. Howard's algorithms. Applications, problem tormulation, computational procedures. Prerequisites: MA 561 and either OR 627 or OR 631.

OR 635 Advanced Linear Programming*
21/2:0.3
Parametric programming. Primal-dual algorithm. Upper bounds and generalized upper bounds. Decomposition principle. Network flows. Stochastic and chance-constrained programming. Applications to large-scale systems. Construction of computer programs. Prerequisites: MA 561 and OR 631.

OR 838 Network Flows and Application*
$21 / 2003$
Introduction to graphs and networks. Definition and fundamentat principles of networks. Maximum flow and minimum cost models in static and dynamic networks. Stochastic and activity
ty of equilibrium. Particle dynamics, harmonic oscishator afid planetary motion. Plane rigid body dynamics. Prerequisites: MA 103 and PH 101.

PH 230 introduction to Atomic and Nuclear Physics

20:2
Properties of atoms, nuclei, and electrons, photoelectric effect, quantization, Bohr atoms and spectra, wave nature of particles, electron spin and periodic table, radioactivity, structure of nucleus, nuclear reactions. Prerequisite: PH 103.

PH 232 Introduction to Modern Physics
21/2:11/2:3
Kinetic theory, relativity, quantization, X-rays, atomic physics, solid state, nuclear, high energy physics. Lectures, discussion sessions and six laboratory sessions during the semester. Prerequisite: PH 103.

PH 240 Opties

3:0:3
Pfinciples of reffection, refraction, photometry, interference, diffraction, polarization, dispersion, scattering; application to tenses, optical instruments, interferometers, resolving power, spectra. Prerequisite: PH 103.

PH 281 Astronomy and Astrophysics* $30: 3$
Historical development. Traditional and modern observational techniques. Theories of planets, stars, galaxies. High points of current advances in astrophysics and cosmology. Given on demand. Prerequisite: PH 103.

PH 303-304 Physical Measurements I, It* each 1:3:2

 Precision measurements in mechanics, heat, electricity, optics, modern physics. Lab fee required. Given alternate years. PH 303 prerequisites: PH 232 and PH 335. PH 304 prerequisites: PH 303 and PH 336.
PH 313-314 Introduction to Theoreticel Physics I, II*

each 3.0:3
Provides a foundation for more advanced graduate courses by deveioping mathematical methods used in classical theoretical physics. Topics include Lagrange's equations, rigid body motion, normal modes of motion, Hamilton's equations, vibrating strings and membranes, flow of fluids, flow of heat, electrostatics, electrodynamics, Maxwell's equations. PH 313 prerequisites: PH 210 and PH 321 . $\mathrm{PH} 3 \$ 4$ prerequisite: PH 313.

PH 321 Electrlcity and Magnetism

4:0:4
Properties of the electrostatic, magnetostatic and electromagnetic field in vacuum and in material media. Maxwell's equations with applications to eiementary problems. Prerequisite: MA 104.

PH 335-336 Atomic and Nuclear

Physies 1, II
each 3:0:3
introduction to electronic and nuclear structure of the atom. Relativity, wave mechanics, natural and artificial radioactivity, fission, cosmic rays. Fundamental experiments and postulates of wave and particle physics. PH 335 prerequisite: PH 232. PH 336 prerequisite: PH 335.
Also listed under NU 335-336
PH 343 Themodynemics and Kinetic Theory
4.0.4

Discussion of experimental basis or fundamental laws of macroscopic thermodynamics. Operational definitions of heat, internal energy, entropy, absolute temperature and other thermodynamic functions. Techniques of deriving and using thermodynamic relations. Introduction to principles of kinetic theory of gases. Boltzmann distribution H-theorem, viscosity, thermal conductivity. Prerequisite: PH 336.

PH 372 X-Ray Diffraction
23:3
Production and properties of x-rays. Elements of crystatfography. Stereographic projection. Powder and single crystal
diffraction techniques. Structure and crystal orientation. Stress analysis and phase diagram determination by x-ray techniques. Qualitative and quantitative chemical analysis by x-ray techniques. Prerequisites: MA 104 and 9 H 103.

Also listed under MT 412

PH 381-382 Reading Course in
Physles 1, It
each 2 credits
Readinr course in spectal topics in physics, supervised by an appropriate staff member. Prerequisttes: physics major, funior standing and departmental approval.

PH 390 Sentor Seminar

$20-2$
Topics of general interest prepared, reported and discussed by the students. Prerequisite: PH 336.

PH 391-394 Bachelor's Thesis in Physics each 2credits An individual investigation involving theoretical, experimental and bibliographic study of some problem of interest to physicists. Students may register for thesis in parts as noted. Total credits determined in consultation with adviser.

PH 399 Senior Honors Work in Physics*
credit to be arranged
Independent work undertaken by qualified honor students in physics. Course material arranged by a faculty steering committee.

GRADUATE COURSES

PH 601.602 Physics tor Chemists 1 , 11 " each $33 / 4: 0: 41 / 2$ For doctoral candidates in chemistry with only a general physics background, gives training in classical physics, electricity and magnetism, geometrical and physical optics. May not be used for degree requirements in physics. Required for Ph.D. candidates in physical chemistry. PH 601 prerequisites: MA 104 and PH 107. PH 602 prerequisite: PH 601.

PH 603 Graduate Laboratory*
0.4:3

Practice in experimental research techniques through setting up and carrying out experimental projects in classical and modern physics. Given alternate years. Lab fee required. Prosequisite: PH 304.

PH 604 1 Physics of Stars*
21/20:3
Discussion of internal constitution of stars with emphasis on nuclear reactions and generation of energy. Curfent theories of development of stars and of giant and dwarf stars. Prerequisite: PH 336.

PH 605-806t Special Tochntques in Experimental

 Physics I, Heach 0.3:1 $1 / 2$
Concerned with a range of specialized techniques and processes of modern experimental physics. Depending on requirements of thesis student and recommendation of adviser, concentration on advanced laboratory skills in areas such as vacuum techniques, thin films, preparation of samples for solid-state studies, crystal growing, cryogentcs and instrument design. Emphasis on intensive training in those particular skills required in student's research endeavors. Permission of stu dent's adviser and of director of the course required. May be taken for a maximum of two semesters. Prerequisite: concurrent thesis registration.

PH 607 Mathematical Methods of Physics I* $21 / 2,0 ; 3$ Review of vector and tensor analysis. Introduction to complox variable theory. Special functions of mathematical phystes. Dlfferential equations of mathematical physics. Emphasis on unifying role of mathematics in physics on physical concepts and problems. Prerequisites: PH 321 or equivalent and PH 313 or equivatent.

PH 608 Mathematical Methods of Ptysics II* 21/2:0:3

 N -dimensional vector spaces and Hilber space. Calculus of variations and eigenvalue problem. Green's function solutions to differential equations. Introduction to integral equations. Emphasis on unifying role of mathematics in physics and on physical concepts and problems. Prerequisite: PH 607 or equivalent.
PH 612 \dagger Minicomputer Instrumentation for Scientific Research*

11/4:2:3
Fundamentals of digital electronics and minicomputers, computer-automated laboratory instrumentation, programming and interfacing required for data acquisition and control in scientific research, experiments with minicomputers and with laboratory apparatus interfaced directly to minicomputers. Lab fee required. Prerequisite: instructor's permission.

Also listed under CM 760 and BE 623

PH615 Theoretical Mechenics I 21/2:0:3 Principles of particle and rigid body dynamics. Lagrange's equations. Small vibrations of coupled systems, normal modes of oscillation. Prerequisite: PH 313 or equivalent.

PH616 Theoretical Mechanics It

21/2:0:3
Hamiltonian mechanics. Transformation theory of mechanics including the Hamilton-Jacobi and Poisson bracket formulation, Lagrangean formulation of mechanics of continuous media. Prerequisite: PH 615.

PH 623 Electromagnetic Theory I
21/2003
Maxwell's equations. Plane waves. Relativistic covariance of electromagnetic field. Motion of charges in fields. Fields of moving charges. Hertz and Lienard-Wiechert potentials. Radiation from charges, dipoles and quadrupoles. Prerequisite: PH 321.

PH 624 Electromagnetic Theory II

21/2:0:3
Interaction of electromagnetic fields with material media from classical viewpoint. Macroscopic description of dielectric, magnetic and conducting materials, energy relations, dispersion, and attenuation in dielectrics and ionized media. Wave propagation in anisotropic crystals and ferrites; waves in inhomogeneous media. Prerequisite: PH 623.
Also listed under EL 673

PH 633-634 \dagger Introduction to Nuclear and Elementary Particle Physics I, II*
 each $21 / 2.0$:3

Survey of fundamental properlies of atomic nucleus and its constituents. Two-body problems at low energies and the theory of nuctear forces. Nuclear radioactivities such as alpha-, gamma- and beta-decay. General features of nuclear reactions and of the various nuctear models. Basic properties of eiementary particles, their modes of decay, interactions, classifications and invariance daws. PH 633 prerequisite: PH 336 . PH 634 prerequisite: PH 633.

PH 635 Biophysics I*

21/2:0:3
Physical properlies of biological systems. Natural properties of biological components. Structural strength, elasticity of bones, muscie, other tissue. Flow properties through tissue, diffusion of gases and liquids, flow-through vessels. Compartmental analysis, modets, trace analysis. Effects of stimuti on various body organs and mechanisms. Temperature effects, electrical excitations. Prerequisite: PH 335 or equivalent.
Aso listed under BE 603
PH 636 Biophysics Il* $21 / 2.00: 3$
Transport processes in and models of the specific organs. Application of radionuclides and dyes for static and dynamic imaging. Theoretical and practical aspects of nerve conduction with detailed discussion of the Hodgkin-Huxley and current models. Prey-predator interactions in biological systems on the
cellular level, in radioimmunoassays and in population control. Prerequisite: PH 635.
Also fisted under BE 604

PH 637 Radiation Physics with Blological and Medical Applications*
 21/2.0:3

Principles of atomic and molecular physics with stress on the problems of radiation and biological effects of ionizing radiation. Radiation dosimetry including internal and external exposures and relationship between doses, biological behavior of radionuclides, radiation safety levels, effects of accoustical, microwaves and thermal radiation. Prerequisite: PH 335 or equivalent.
Also listed under BE 605
PH 643-644 \dagger Physical Optics I, 11*
each $21 / 2: 0: 3$
Classical electromagnetic theory of geometrical and physical optics as applied to propagation, reflection, refraction, dispersion, optics of crystals, interference, diffraction. Quantum and statistical optics of coherence and partial coherence as applied to masers and lasers, and nonlinear effects. PH 643 prerequisite: PH 314, PH 644 prerequisite: PH 643.

PH 651-652 $\boldsymbol{\text { Introduction }}$ to Solid-State

 Physics I, IIeach $21 / 20: 3$ Survey of phenomena and introduction to theory of physics of crystalline solids. Topics from thermal, magnetic, electrical and optical properties of metals, insulators and semiconductors. PH 651 prerequisite: PH 336 . PH 652 prerequisite: PH 651 .

PH 663 Statisticas Mechanics I

$21 / 2.0: 3$
Equilibrium distributions. Relationships to laws of thermodynamics. Quanturn effects. Maxwell-Boltzmann, Fermi-Dirac, Bose Einstein distributions. Applications to bulk properties of matter and to thermal radiation. Kinetic theory. Non equilibrium phenomena using Boltzmann transporl equation. Prerequisite: graduate status.
Also listed under EL, 651
PH 684 Statistical Mechanics II
21/2:0:3
Micro-, macro- and grand canonical ensembies and principles of classical statistical mechanics. Condensation phenomena. Treatment of fluctuation and transpori phenomena. Density matrix formalism of quantum statistical mechanics. Discussion of many-body problems. Prerequisites: PH 663 and PH 667, or equivalent.

Also listed under EL 652

PH 687.688 Ouantum Mechanics $\$$,II
each $2 y_{2}$: TEX 3
Quantum mechanics with applications to atomic systems. The use of Schroedinger's equations. Angular momentum and spin. Problems and approximation methods. Semiclassical theory of field-matter interaction.

Also listed under EL 655-656

PH 669-970 Ouentum Mechanlcs III, IV*

each $21 / 2: 0: 3$
Theory of measurement and connection with classical dynamics. The Dirac formulation, transformation theory, scattering theory and introduction to the theory of radiation. Candidates for the Ph .D. in physics may receive credit only on completion of the futl sequence of four courses. PH 669 prerequisites: PH 616, PH 624 and PH $667-668$. PH 670 prerequisite: PH 669.

PH 671 X-Ray Diffraction ${ }^{*}$
21/2:033
Theory of x-ray scattering, crystallography and crystal optics, diffraction by crystalline materials, space group theory, theory of x-ray diffraction methods, including Laue techniques, rotating crystal and moving film methods, single crystat diffractometry. Introduction to powder methods.
PH 672 \boldsymbol{X}-Ray Diffrection II* 21/2.0:3
The interpretation of x-ray powder data. Theory and methods of crystal structure analysis, crystallite size determination, scat-
tering by amorphous substances, crystal perfection, small angle scattering. Prerequisite: PH 671.

PH 873 \dagger X-Ray Diffrection Techniques I^{*} 0:4:3 Laboratory course. The generation, detection and properties of x-rays. Orlentation of single crystals. Powder methods, interpretation of patterns and applications to solid state problems. Lab fee required. Prerequisite: PH 671.

PH 674 \dagger X-Ray Diffraction Techniques II* 0:4:3
Continuation of PH 673 . Study of single crystals using rotation, oscillation, Weissenberg, precision and diffractometer techniques. Determination of space groups. Intensity measurements. Stress-strain analysis, small-angle scattering and scattering by amorphous materials. Lab fee required. Prerequisites: PH 672 and PH 673.

PH 676 Methods of Crystal Structure Determination*

$21 \frac{1}{2}, 0: 3$
The theory of crystal structure analysis. Trial and error methods, the Patterson function and electron density maps. Direct methods. Least squares refinement procedures. Computing methods. Prerequisite: PH 672.

PH751.752 Theory of Solids I, II*
each $21 / 2=0.3$ Quantum and statistical mechanics of the band theory of solids as applied to alectrical, thermal and optical properties of metals, semiconductors and insulators. PH 751 prerequisites: PH 664 and PH 668. PH 752 prerequisite: PH 751.

PH 753-754 Crystal Dynamics I, II*
each $21 / 2: 0: 3$
Discusslon of the particular physical properties of crystals arising from anisotropy of matter constants. Topics include thermal, electrical, optical and elastic properties and effecte arising from coupling of these properties. Interpretation of these material constants according to modern atomistic theory and principles of crystal symmetry. PH 753 prerequisites: PH 616 and PH 624. PH 754 prerequisites: PH 668 and PH 753.

PH 761.762 Relativistic Quantum Mechanics

 and Field Theory 1, if"each 21/2:0:3 Dirac theory of the electron and positron, application of Dirac equation for discussion of electron spin and fine structure of hydrogen atom spectrum. Feynman's positron theory in comparison with Dirac's hole theory. Scattering of relativistic particles. Brief review of Lagrangian formalism of classical fields. Quantization of fields, scattering and the S-matrix theory. Feynman diagrams and renormalization theory. Application of dispersion relatlons to strong interactions. PH 761 prerequisite: PH 670. PH 762 prerequisite: PH 761.

PH 763764 Nuclear Theory 1, II*

each $21 / 200.3$
Summary of present knowledge of fundamental properties of nuclei followed by advanced quantum mechanical treatment of nuclear forces, nuclear reactions, nuclear struclurea, nuclear radiatlon and the theory of beta-decay. Emphasis on models of nuclear structure and nuclear reactions. Prerequisite: PH 670 or equivalent.

PH 765-760 HightEnergy Physics and Elementary

 Particle Theory $1,11^{*}$aach $21 / 2,0: 3$
Basic properties of particles, their interactions and invarience laws of particle physics. Topics include fundamental properties and quantum numbers of the elementary particles, classification of interactions, invariance under space reflections, time reversal, charge conjugation, isotopic spin. Calcuiation of cross-sections, branching ratios, lifetimes. Discussion of the higher symmetry schemes of $\mathrm{SU}(3), \mathrm{SU}(6)$, etc. Field theory and second quantization introduced as necessary. PH 765 prerequisite: PH 670. PH 766 prerequisite: PH 765.

PH 767.768 Group Theory and Symmetry Principles in Physics 1 , II*
each $21 / 2.0: 3$
Invariance princlples of physics and corresponding groups of transformations. Introduction to group theory with emphasis on Lie groups. PH 767 prerequisite: $\mathrm{PH} 670 . \mathrm{PH} 768$ prerequisite: PH 767.

PH 780 Speclal and General Theory of Relativity* $\quad 21 / 2: 0: 3$
Introduction to Einstein's theory of relativity, Minkowski geometry, relativistic mechanics and electrodynamics, applications of theory with special reference to highenergy physics; gravitation and principle of equivalence, Riemannian geometry, curvature tensor; equations of Einstein's theory of gravitation, approximate and rigorous solutions, observational tests of the theory, theory of ponderomotive equations. Prerequisite: PH 616 and PH 624 or equivalent.

PH 801-802 Selected Topics in Advanced

 Physice $1,11^{*}$asch 21/2:0:3
Current or advanced topics of particulay interest to graduate students. Subject matter changes each year determined by student and faculty interest. May be given in more than one section. Consult department office for current offerings.

PH 601-902 Phyeles Colloquium I, it
each 20:0
Presentation of topical subjects of experimental and theoretical physics by the staff and outside iecturers. Fee required. Required of all master's and doctoral candidates.

PH 927 Energy Policy Issues*
21/2:0:3
See Energy Program for details.
PH 828 Energy Resource Distribution and Conversion Technology

21/2:0:3
See Energy Program for details.
PH 935 Engineering Projects Related to Public Administration
each 3 unlts See Polytechnic's Cooperative Program with New York University's Graduate School of Public Administration for details.

PH 953-954 Graduate Seminar 1, II

each 2:0:1 $1 / 2$
Prepared presentation by participating students and discussion of topics in physics of current interest and from the literature. Required of all degree students.

PH 955-958 Reading in Physics I, II

each $21 / 2: 0: 3$
Individual reading of selected papers and current literature in a specialized field of physics guided by a faculty member. Prerequisite: graduate adviser's and supervising faculty member's permission.
PH 981.962 Seminar in X-Ray Diffraction I, II
each 20:0
Topics from current literature and reports on current research by staff and outside lecturers. Required of all students with minors in crystallography. Fee required.

PH 999 Research in Physics
each 3 units
An original investigation in some branch of physics or chemical physics, which may serve as basis for the degree of master of science or doctor of philosophy, to be carried out under the directlon of a member of the Department of Physics. Chemical physica majors should register for appropriate CM courses. Minimum research registration requirements for these degrees:
M.S. 12 units; M.S. (project option) 6 units; Ph.D. 36 units. Registration for research is required each semester consecutively until student has compieted adequate research project or acceptable thesis and has passed the required oral examination. Doctoral students should expect in general some registration beyond the minimum. The number of research credits registered for each semester should reflect realistically the time to be devoted to research. Prerequisites: degree status and graduate adviser's and research director's consent.

FACULTY

Ronald D. Parks, Professor and Head of Physics
B.S., Kansas State University; M.S., Ph.D., Stanford University
Surface and low-temperature physics
Raphael Aronson, Professor of Nuclear Engineering and Physics
B.S., University of Minnesota; M.A., Ph.D., Harvard University
Transport theory
Patrick T. Cahill, Professor of Physics B.S., M.S., University of New Hampshire; Ph.D., Harvard University
Medical physics, atomic physics
Deo C. Choudhury, Professor of Physics
B.Sc., M.Sc., University of Calcutta (india); Ph.D., University of California
Theoretical nuclear physics
Hellmut J. Juretschke, Professor of Physics
B.S., M.A., Ph.D., Harvard University

Solid-state and surface physics
Terje Kjeldaas, Jr., Professor of Physics
B.S., Polytechnic Institute of Brooklyn; M.A., Columbia

University; Ph.D., University of Pittsburgh
Theoretical solid state and atomic physics
Daniel C. Mattis, Thomas Potts Professor of Physics
B.A., Massachusetts Institute of Technology;
M.S., Ph.D., University of Illinois

Theoretical physics, condensed matter
Benjamin Post, Professor of Physics
B.S., CCNY; M.S., Ph.D., Polytechnic institute of Brooklyn
X-ray physics, crystallography, solid-state chemistry
Nathan Wainfan, Professor of Physics
B.E.E., M.S., New York University; Ph.D., University of Southern California
X-ray physics, gas discharges
Stephen Amold, Associate Professor of Physics
B.S., University of Toledo; M.A., Ph.D., CCNY Experimenta/ condensed matter, radiation physics

Hilda Bass, Associate Professor of Physics
B.A., Hunter College; M.A., Smith College

Physics education
Oliver B. Keyes, Associate Professor of Physics
B.S., M.S., Fordham University

Physics education
Walter Kiszenick, Associate Professor of Physics and Nuclear Engineering
B.S., Brooklyn College; M.S., Ph.D., Polytechnic Institute of Brooklyn
Electron microscopy, x-ray diffraction

Meir Menes, Associate Professor of Physics B.S., Cooper Union; Ph.D. New York University Experimental solid-state physics, gaseous electronics

Donald B. Scarl, Associate Professor of Physics B.A., Lehigh University; Ph.D., Princeton University Quantum optics, solar energy technology, highenergy physics

Laxmi Chaud Gupta, Visiting Associate Professor of Physics
B.S., University of Delhi; Ph.D., University of Bombay Experimental solid-state physics

Peter Hanggi, Assistant Professor of Physics
B.S., College of Mathematics and Natural Sciences,

Basil; M.S., Ph.D., University of Basil (Switzerland).
Statistical mechanics
Peter Riseborough, Assistant Professor of Physics
B.S., Ph.D., Imperial College (England)

Theoretical condensed matter

ADJUNCT FACULTY

Hubert W. Schieuning, Adjunct Research Professor of Physics
M.A., New York University; M.E., Polytechnic Institute of Brooklyn
Vacuum technology
Benjamin Bloch, Adjunct Assistant Professor of Physics
B.S., Columbia University; Ph.D., Polytechnic Institute of Brooklyn
Theoretical atomic physics
Lawrence Mendelsohn, Adjunct Research Professor of Physics
B.S., Brooklyn College; M.S., Columbia University; Ph,D., New York University
Theoretical atomic physics

EMERITUS FACULTY

John J. Dropkin, Professor Emeritus
B.A., Columbia University; M.S., Ph.D., Polytechnic Institute of Brooklyn
Solid-state physics
Paul P. Ewald, Professor Emeritus
Ph.D., University of Munchen (Germany)
X-ray physics

POLYMER SCIENCE ANDENGINEERING

For many years, Polytechnic institute has had a traditional commitment to a strong polymer program of worldwide renown. At the present time, the Departments of Chemical Engineering and Chemistry jointly offer graduate programs leading to the degree of master of science and doctor of philosophy in polymer science and engineering.

GRADUATE STUDY

An undergraduate degree in either chemical engineering or chemistry with a mathematics background which includes at least one course in differential equations is usually required for admission to the graduate program. Applicants with degrees in other fieids or from other colleges may be admitted with undergraduate or graduate deficiencies after the consent of a graduate adviser is given.

The program leading to the master of science degree is designed to meet the need for engineers and chemists well versed in the fundamental principles of polymer science and engineering.

REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE IN POLYMER SCIENCE AND ENGINEERING

Candidates for the degree master of science in polymer science and engineering are to plan their programs in accordance with the following required courses:

No.
CH 917
CH 921
CH 922
CH 926
CM 771
CM 783
CH 991-992
Electives-chosen* from such courses as
CH 862, CH 923. CH 933, CH 940-941, CM 772, CM 781, CM 782, CM 785, CM 905, CM 760 , CM 801, AM 603-604, AM 606, AM 625, MT 412 MT603, MT620, PH 673-674, PH 676

Units

Project/Thesis	Option	
Either		
CH 930	Guided Studies in Polymer	
	Science and Engineering	6
or	Electives-from abovelisting	3
CH 987	Master's Thesis	9
		36

The doctor of philosophy in polymer science and engineering program inciudes advanced graduate work for qualified students interested in research and development. Students enrolled in the program may select elective courses either from polymer chemistry or from polymer engineering offerings. Polymer science and engineering may also be chosen as a minor by students in the chemistry department or the chemical engineering department.

REQUIREMENTS FOR THE DOCTOR OF PHILOSOPHY IN POLYMER SCIENCE AND ENGINEERING

Programs of study are planned individually with each candidate by members of Departments of Chemical Engineering and Chemistry. Systematic study toward the Ph.D. is carried out under the direction of a guidance committee appointed by the dean of graduate studies for each candidate. The program is planned to give the student a thorough polymer science and engineering background accompanied by study in a minor field chosen by the candidate. The student must pass a comprehensive qualifying examination in polymer science and engineering, exhibit a reading knowledge in a foreign language and present a doctoral dissertation.

Each candidate for the doctorate must complete a minimum of 90 units of academic work beyond the bachelor's degree, including a minimum of 30 units of dissertation research. Although the student may elect to take more than 30 units of Ph.D. thesis, only 30 units of Ph.D. thesis can be counted in the required 90 unit minimum, and these must be taken at Polytechnic. Once the student has started the dissertation, registration must be continuous, (excluding the summer session), until it is completed and accepted. Of the 90 units, a minimum of 30 units must be taken at Polytechnic. A minimum of 48 graduate units beyond

[^19]the bachelor's degree (not including Ph.D. thesis) in polymer science and engineering subjects will be required, of which at least 18 units must be taken at Polytechnic. A minor is required within a science or engineering department and should consist of at least 12 units.

Attendance is required at the chemical engineering or polymer science and engineering seminars for at least four semesters. Each student must maintain an overall B average in those courses submitted for the doctoral degree.

For a Ph.D. degree in polymer science and engineering, the following courses are required and may be used to complete the 48 graduate units required:

No.	Required Subjects	Units
CM 772	Synthesis of High Polymers	3
CM 781	Solution Properties of High Polymers	3
CM 782	Macromolecules in the Solid State	3
CM 783	Laboratory Methods in Polymer Chemistry	3
CH 917	Introduction to Polymeric Materials	3
CH 921	Polymer Processing	3
CH 922	Polymer Processing Laboratory	3
CH 926	Engineering Properties of	
	Polymers	$\underline{24}$

Students interested in the Ph.D. program should obtain a brochure outlining procedures and requirements, which is available from the office of the department head.

graduate courses POLYMER SCIENCE AND ENGINEERING

CH 862 Rhgology of Non-Newtonian Fluids* 21/2:0:3
Classification of non-Newtonian viscoelastic fluids. Derivation of theological equations of state from continuum mechanics point of view. Molecular viscoelastic theories: random-coil theory and network theory. Experimental characterization of non-Newtonian fluids; steady and dynamic experiments, measurements of normal stress differences in shear flow. Engineering applications to polymer processing operations. Prerequisites: CH 631, MA 531 and MA 532 or equivalent.

CH 917 Introduction to Polymeric Materials
21/2:0:3
Principles of technological aspects of polymerization, compounding and processing of polymeric materials, their properties and apptications. Thermoplastic materials such as polyethylene, polypropytene, poly vinyl chloride, polystyrene, acrylics and engineering plastics will be discussed. Thermosetting materials to be covered include: phenolics, epoxies, unsaturated polyesters, aminoplastics, polyurethanes and sificones. Prerequisite: CM 123 or equivalent.

CH 921 Polymer Processing

21/2:0.3
Applications of engineering principles of polymer processing. Study of non-Newtonian polymeric systems. Extrusion theory and applications. Discussions and probiem-solving in compression, transfer and injection molding, thermoforming and plasticization, as well as other polymer engineering processes. Prerequisite: CH 220 and CH 221 or instructor's permission.

CH 922 Polymer Processing Laboratory
0:4:3
Laboratory study of engineering principles and processes involved in polymer processing and analysis. Experiments include injection molding, extrusion, thermoforming, mixing and compounding, melt theology, flat-and blown-film extrusion, blow molding, etc. Prerequisite: CH 921.

CH 923 Industrial Polymerization Processes* \quad 21/2:0.3

 Analytical study of principal processes used to synthesize polymers, including polymer engineering operations, equipment, polymerization control, instrumentation, process economics. Emphasis on development and solution of polymer plant engineering problems. Prerequisite: CM 771.CH 926 Engineering Properlies of Polymers $\quad 21 / 2: 003$ Study of mechanical properlies and structure of solid polymers. Viscoelastic theory and response of amorphous, crystalline and composite materials in stress-strain tests, creep, stress relaxation and dynamic tests. Effects of orientation and previous history on mechanical behavior. Prerequisites: CH 917, CM 771.

CH933 Coatings Technology

21/2:0:3
Chemistry, manufacture and applications of organic film formers; solvents and solubility principles; mechanisms and methods of film application, formation, conversion. Chemistry, manufacture and applications of pigments. Principies and methods of pigment dispersion and coatings preparation, including influence of rheology and surface chemistry. Principles of formulation of important paints and cleat coatings. Specifications and test methods for coatings. Prerequisite: CM 123 or equivalent.

CH 940-941 Selected Topics in Polymer

 Science and Engineering I, II*atach 21/2:0:3
Topics ot special interest in polymer science and engineering as announced in advance of particular semester offering. Prerequisite: adviser's approval.

CW 771 Introductory Polymer Chemistry 21/2:003

 Synthesis of polymers by step reaction and addition polymerization, formation of three-dimensional networks, block and graft polymers, polymer degradation, characterization of polymers in solution, rubber elasticity, polymer crystalization, spectroscopic techniques for polymer study, properties of cormmercial polymers. Prerequisites: CM 123, CM 125 and CM 162.
CM 772 Synthesis of High Polymers

$21 / 2: 0,3$
Organic aspects. Chemistry of monomer and polymer formation. Modern mechanistic analysis of reactions. Stereochemistry of polymer structure and forces of stereoregulation. Condensation, free radical (bulk, suspension, emulsion, solution), ionic, ring-opening and nonclassical polymerization reactions.

CM 781 Solution Properties of High Polymers $\quad 21 / 2: 0: 3$ Application of osmometry, light scattering, equilibrism ultracentrifugation, electrophoresis, viscosity, diffusion, ultracentrifuge sedimentation, flow birefringence, polarimetry, spectroscopy and other techniques to the characterization of dissolved. macromolecules. Properties of polyelectrolytes, association in solutions containing macro-molecules and reaction kinetics in macromolecular solutions also discussed. The course is designed to cover both synthetic and biological macromolecules. Prerequisites: CM 161, CM 162, and CM 771 or CM 783.

CM 782 Macromolecules in the Solid State

21/2:0:3 Crystalline-amorphous systems, thermodynamics of crystallization, defect structures, morphology of polymer crystals. Characterization of polymeric solids by x-ray and electron diffraction, potential energy calculations, electron microscopy, absorption spectroscopy and nuclear magnetic
resonance. Electrical and optical properties of polymer solids. Pserequisite: CM 771

CM 783 Laboratory Mathods in Polymer Chemistry 0:5:3 Experiments on free radical, condensation, ionic and copolymerization, absorption, and NMR spectroscopy, intrinsic viscosity, light scattering, gel permeation chromatography, x-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dilatometry, concentrated solution viscosity, and other aspects of polymer synthesis and characterization. Lab fee required. Prerequisite: CM 771.

CM 785 Special Topics in Polymer Chemistry $\quad 21 / 2: 0: 3$
Presentation at intervals of various advanced or specialized topics in polymer chemistry.

PROJECT, THESIS AND SEMINAR

CH 930 Guided Studies in Polymer Science

 and Engineering 6 units, each 2 unitsSelection, analysis, solution and presentation of a comprehensive report of some problem involving polymer science and engineering, such as polymer synthesis, processing, evaluation, equipment design, etc. Conducted under supervision of staff member. Conferences scheduled. Candidates for master's degree required to submit three unbound copies of typewritten project repert to advisers one week before last day of classes. Prerequisite: degree status.

CH 987 Thesis for Degree of Master of Science in Polymer Science and Engineering 9 units, each 3 units

 Thesis for master's degree in polymer science and engineering should give results of original investigation of a problem in polymer science and engineering. Thesis may involve experimental research, theoretical analysis, or process design, and possibly a combination thereof. Candidates for a master's degree are required to submit four typewritten unbound thesis copies to advisers before or on seventh Wednesday prior to commencement. Prerequisite: degree status.
CH 989 Dissertation for Degree of Doctor of Philosophy in Polymer Science and Engineering
 30 units, each 3 units

 Dissertation must give resuits of independent investigation of a problem in polymer science and engineering and may involve experimental and/or theoretical work. Thesis must show ability to do creative work and that an original contribution has been made to polymer science and engineering, which is worthy of publication in recognized journals. The candidate is required to take an oral examination on subject of thesis and on related topics. Candidates for a doctor's degree are required to submit five unbound thesis copies to advisers before or on seventh Wednesday prior to commencement. Prerequisite: degree status and a qualifying examination on quantitative aspects of Polymer Science and Engineering.
CH 991.992 Seminar in Chemical Engineering 0:21/2:0

Recent deveiopments in the field of chemical engineering and polymer science and engineering presented through lectures given by engineers from industry, research, and educational institutions, by staff members, and by qualified graduate students. Required for two semesters of all graduate students seeking degrees.

FACULTY

Chang Dae Han, Professor and Head of Chemical Engineering
B.S., Seoul National University; M.S., Sc.D., Massachusetts Institute of Technology; M.S., Newark College of Engineering; M.S., New York University Rheology, polymer processing, process control

Frederick Eirich, Distinguished Professor of Polymer Chemistry
Ph.D., University of Vienna
Mechanical behavior of polymers, rheology, colloid
chemistry, chemical evolution, biopolymers
Hebert Morawetz, Institute Professor of Polymer Chemistry
B.A.Sc., M.S.Sc., University of Toronto; Ph.D.,

Polytechnic Institute of Brooklyn
Physical chemistry of polymers in solution and in bulk
Yoshiyuki Okamoto, Professor of Chemistry
B.S., Osaka University of Science and Engineering
(Japan); Ph.D., Purdue University
Polymer synthesis and polymer reagents
Eli M. Pearce, Professor and Head of Chemistry
B.S., Brooklyn College; M.S., New York University; Ph.D., Polytechnic Institute of Brooklyn Polymer synthesis, degradation and structure-property relationships

Martel Zeldin, Associate Professor of Chemistry B.S., Queens College; M.A., Brooklyn College; Ph.D., Pennsylvania State University
Chemistry of elements in Groups IIIA and IVA, inorganic polymers
Jovan Mijovic, Assistant Professor of Chemical Engineering B.S., University of Belgrade; M.S., Ph.D., University of Wisconsin (Madison)
Polymer morphology, fracture properties of polymers, adhesives and composites

William T. Winter, Assistant Professor of Polymer Chemistry
B.S., Ph.D., SUNY (College of Environmental Science \& Forestry), Syracuse University
Polymer morphology and crystallography, polysac-
charides and other biopolymers

EMERITUS FACULTY

Paul F. Bruins, Professor Emeritus of Chemical Engineering
B.S., Central College, Iowa; M.S., Ph.D., Iowa State

University; D.Sc. (Hon.), Polytechnic Institute
of New York
Plastics technology, electrochemistry, materials science
Herman F. Mark, Professor Emeritus of Chemistry and Dean Emeritus
B.S., Ph.D., University of Vienna

Synthesis, characterization, and properties of natural and synthetic polymers

SOCIAL SCIENCES

UNDERGRADUATE PROGRAM

The department offers a modern program of study leading to the degree of bachelor of science in social sciences. This curriculum has been conceived as an attempt to meet increasing needs for specialists in the social sciences who have more than just a passing familiarity with the physical sciences, mathematics and the humanities. Thus the program is designed to draw on the rich resources available at Polytechnic; the students are offered specialized training in the social sciences in a setting noted for its scientific and technical excellence.

The degree's presentation is interdisciplinary with emphasis on developing an integrated historical, economic, behavioral and cultural understanding of human society and civilization. Within the general social science curriculum, the student may major in one of three areas: history and history of science and technology, behavioral science (anthropology, psychology, sociology and politics) or economics. Each of these is described in the details below.

More and more occupations and professions require individuals firmly grounded in the social sciences. Accordingly, our graduates can look forward to employment opportunities in governmental agencies, foundations and private industry or to independent professional practice. Specific fields in which a social science background is useful include teaching at all levels: applied social research on problems involving race, poverty, education, urban and national planning, and foreign aid; managerial and personnel operations; and the practice of taw and medicine.

The department is also responsible for the social science courses that are an essential part of the general education and professional training of scientists and engineers at Polytechnic. The foundation provided in the social sciences helps prepare students for leadership in industry, education and government. In keeping with the educational ideats of Polytechnic, it is also the aim of the department to prepare students for active roles of responsible citizenship in a complex society.

HISTORY AND HISTORY OF SCIENCE AND TECHNOLOGY

Courses in history emphasize the elements of social and economic change in various areas and periods since the Renaissance. Both theoretical discussion
and practical response are treated in order to elucidate the deeper meaning of historical movements more clearly than the more traditional political narrative. The methods and conclusions of related work in economics and the behavioral sciences are applied to this historical analysis.

The basic sequence on the history of Western civilization familiarizes students with political, economic, social, cultural and intellectual developments in European history since the Middle Ages. It also introduces them to original documents and to a range of scholarly interpretations. An introductory course on the modern worid emphasizes the conflict of ideologies in the twentieth century and the history of non-Western societies. Students are also given the best opportunity to analyze and discuss the best historical scholarship in a variety of special subjects: history of science and technology, development of modern Russia, international communism, American civilization, AfroAmerican and non-Western history, the Renaissance, imperialism, European thought, and twentieth-century thought. Methods of instruction are similarly varied and include formal lectures, class discussion, colloquia, films and tuforials leading to independent research by students.

ECONOMICS

The economics courses of the department guide students in developing a critical understanding of contemporary economic ideas and their roots, institutions and problems. They concentrate on posing, in their theoretical and historical context, the important questions of domestic and international public policy. Majors in economics will receive a thorough grounding in the tools of economic analysis, mathematics and statistical methods. Concentration in economics will therefore prepare students for careers in governmental service, business and graduate work not only in economics, but in any of the social sciences. Finally, this theoretical training is applied to actual economic problems and circumstances.

BEHAVIORAL SCIENCE

Introductory courses in anthropology, politics, sociology, psychology and social psychology are intended to broaden students' understanding of social process and human behavior and to prepare them to meet problems of a professional or administrative nature with insight and sophistication. For the student major-
ing in behavioral science, advanced courses provide more detailed and intensive study. Available courses examine contemporary American society and its impact on the individual, the variety of social and cultural forms that have unfolded in the course of history and their implications for the contemporary world as the "new nations" enter the historical mainstream, and language, learning, and the modification of behavior with experiments in psychophysics, learning theory and communication. Students have an opportunity to become acquainted with the range of behavioral science methods from parlicipant observation and structured interviewing to opinion sampling, psychological testing and controlled laboratory experiments.

PSYCHOLOGY

Courses introduce the student to psychology as the science of behavior and emphasize that learning is an active process that may be empirically investigated. The department offers advanced courses in the areas of social, developmental, personality, comparative, physiological, learning and abnormal psychology. The major focus in the department is experimental, and all majors take a two-semester laboratory sequence, which offers a unique opportunity for undergraduates to master fundamental methods and concepts in the empirical investigation of human and animal behavior. In addition, other psychology courses allow ample opporlunity for students to design and carry out individual research projects under the supervision of the instructor. A concentration in psychology enables a student to pursue graduate training in psychology and in other related areas.

REQUIREMENTS FOR THE BACHELOR'S DEGREE IN SOCIAL SCIENCES

Summary	Credits
Requirements	24
Humanities	24
Social Sciences	$20-22$
Mathematics, Science and	$68-70$
\quad Technology	$38-42$
Concentrated study	$12-18$
Electives	

Total credits required for graduation: $126-128$

Humanities

Communications/Literature/Arts (HU 101 and
two courses in literature; or IS 140, IS 141
and one course in literature; and one course in the arts)
Philosophy and Comparative Religion (Any 2 courses from HU 341 to HU 364)
Language or Linguistics (one year German, French, Spanish language or HU 381 Language and Society and HU 382 Introduction to Scientific Study of Language)

Social Sciences
History (SS 101 History of Western Civilization, SS 104 Main Themes in Contemporary History) 6
Economics (two courses selected from SS 251, SS 252, SS 254)6
Psychology; psychology elective) 6

Anthropology/Sociology/Politics (two courses selected from the introductory courses SS 185, SS 175, SS 151)

Mathematics, Science and Technology
Mathematics (MA 091-092 Principles of Mathematics or MA 101-102)
Laboratory Science, one year sequence selected from LS 101-102 Principles of Biology, CM $091-092$ Principles of Chemistry, [or CM 101-102 and CM 111-112], PH $091-092$ Principles of Physics [or PH 101-102]
Two courses selected from CS 100 Introduction to Computer Programming, CS 111 Introduction to Programming, MA 231 Statistical Methods, IE 314 Modeling \& Simulation of Social Systems, or equivalent courses

Concentrated Study

Under guidance of a personal adviser, students are able to plan focused programs, preparatory to their career interests, from a wide range of possibilities.

Students may choose to devote themselves to a single concentration or to divide their time between a major and minor interest. Those who opt for a minor (minimum of 12 credits) may do so in the form of guided reading and/or guided research. Pre-professionally attractive minors are available outside the liberal ants in computer science, operations research, mathematics and management.

Electives

12.18

Students may continue to strengthen their general education andior intensify their concentrations. It is hoped that in the unique setting of a technological university students find it attractive to explore further the history, philosophy, and practice of mathematics, science and technology.

MAJOR CONCENTRATIONS

(12 credits in one group; all courses are three credits each)

History ${ }^{1}$
SS 110
SS 115
SS 116
SS 120
SS 121

Renaissance and Reformation Era
History of Africa
History of Latin America
History of Tsarist Russia to the Revolution
History of the Soviet Union

SS 123	History of the United States: From Settiements to Reconstruction
SS 124	History of the United States: From
	Reconstruction to the Cold Wars
SS 125	American Radicalism and Reform
SS 126	Afro-American History
SS 127	American Economic History in the
	Industrial Era
SS 128	History of Jazz
SS 129	Growth of the United States Constitution
SS 130	The American Revolution
SS 132	Probiems of American Foreign Policy
SS 144	Colloquium in the Intellectual History of Europe During the 19 th Century
SS 145	Colloquium in 20th-Century Thought
SS 147	Colloquium in Imperialism
SS 148	History of Socialism and Communism
SS 149	History of Marxism
SS 153	Revolutions in Comparative Historical Perspective
SS 154	Russia, China and the West
SS 179	Sociology of Human Disease
SS 622	Theory and History
History of Science and Technology' (SS $101-102$ required)	
SS 135	History of Science and Technology: Antiquity to Galileo
SS 136	History of Science and Technology: Galileo to Darwin
SS 137	History of Science and Technology: Faraday to the Present
SS 138	Technology, Science and Contemporary
	Society
SS 139	Technological Forecasting
SS 140	Science and Technology in America
SS 602	Seminar in the History of Science
SS 615	Guided Reading in the History of ldeas
SS 616	Guided Reading in the History of Science
SS 620	History of Biology
SS 621	Development of Physical Theory from Maxwell to Einstein
SS 622	Theory and History
SS 625	History of Technology: Antiquity through Early Industrial Revolution
SS 626	History of Technology: Industrial Revolution to the Present
SS 631	Seminar in the Sociology of Science
SS 635	History of Psychology
Behavioral Sciences	
SS 139	Technological Forecasting
SS 157	Topics in Comparative Politics 1
SS 158	Topics in Comparative Politics II
SS 161	Politics and the Film
SS 177	Social Problems
SS 178	Minorities in the New World
SS 179	Sociology of Human Disease
SS 180	Sociology and Urbanization
SS 182	Man and the Environment
SS 187	World Prehistory
SS 188	Social Change and Evolution
SS 190	Environmental Psychology

[^20]SS 191 Social Psychology
SS 195 Abnormal Psychology
SS 196 Psychology of Stress and Relaxation
SS 197 Personality Development
SS 198 Psychology of Human Development
SS 199 Organizational Behavior
SS 203 Learning
SS 204 Physiological Psychology
SS 205 Comparative Psychology
SS 211 Cultural Backgrounds of African Nations
SS 212 Cultural Backgrounds of the Nations of Asia
SS 213 History and Culture of Americans Called Indians
SS 310 Women in Current Perspective
SS 631 Seminar in Sociology of Science

Psychology

SS 190 Environmental Psychology
SS 191 Social Psychology
SS 192 Experimental Psychology I (required)
SS 193 Experimental Psychoiogy 11 (required)
SS 194 Drugs and Behavior
SS 195 Abnormal Psychology
SS 196
SS 197
SS 198
SS 199
SS 203
SS 204
SS 205
SS 206
SS 635
Psychology of Stress and Relaxation
Personality Development
Psychology of Human Development
Organizational Behavior
Learning
Physiological Psychology
Comparative Psychology
Human Cognition
History of Psychology

Economics

SS 127 American Economic History in the Industrial Era
SS 138 Technology, Science and Contemporary Society
SS 139 Technological Forecasting
SS 255 Public Policy: Growth, inflation and Employment
SS 257 History of Economic Thought
SS 258 Comparative Economic Systems
SS 259 Economic Development
SS 262 Collective Bargaining
SS 263 Labor Economics
SS 264 Urban Economics
SS 265 Money and Banking
SS 266 Libertarian Economics
SS 700 Industrial Organization of the American Economy
SS 711 Advanced Economic Theory
SS 713 Econometrics

GRADUATE STUDY

The Department of Social Sciences offers graduate courses in the history of science and technology, economics and psychology. These are intended for students majoring in social sciences and for graduate students in science and engineering interested in pursuing the interdisciplinary links between their own specialties and the social sciences. Outstanding stu-
dents are advised to apply for financial aid in the form of research fellowships, teaching fellowships or partial tuition remission.

History of Science and Technology-The master's program in the history of science and technology is the first of its kind to be offered in the New York City area. The need for advanced study of the growth of science and technology and their interaction with human society and values has become increasingly evident. Intense specialization has further heightened the need for deeper understanding between the various branches of science and the humanities. In considering ideas, time, process, transfer and social change in the history of science, the student is afforded the opportunity of understanding the elusive connections that exist between science and engineering and the social sciences and humanities. Prospective teachers of science and engineering subjects will be able to increase their effectiveness through knowledge of the history of their own and related disciplines. The libraries of Polytechnic contain many important and rare works on the history of science that may be used for original research.

A total of 36 units is required for the master's degree. Normally a student will start by taking the introductory courses, SS 600 and SS 601, and then proceed to the more advanced courses and seminars. But in each case the student's program will be constructed in consultation with an adviser, taking into consideration the student's background and interests. The student will be encouraged to take up to nine units of work in related fields outside the program, for example, phitosophy, mathematical logic, Renaissance history or one of the sciences or engineering.

To qualify for the degree, the student may elect to write either a comprehensive examination or a thesis embodying an appropriate and substantive piece of research. If the student chooses the former, the examination may be taken in the term in which the course work is being completed. A student choosing the thesis may apply up to 12 units of course work toward the requirements for the degree. Acceptance of a thesis will involve an oral presentation and defense. In addition to the above requirements, the student must demonstrate a reading knowledge of one appropriate foreign language.

Environmental Psychology-The master's program in environmental psychology prepares the student for an interdisciplinary field, which combines efforts and expertise in behavioral and design professions. This program emphasizes the interaction between psychology and the various engineering disciplines to fill a major gap in the training of professionals who work on applied socio-technical problems.

Many aspects of modern engineering and technological development have complex behavioral and social dimensions. Few professionals, however, are conversant with both the technical and social/behavioral aspects of a problem. This program is designed to pro-
duce graduates who have such interdisciplinary abilities by providing students who already have a back. ground in the technical and engineering issues with course work and experience in environmental psychology.

Since, as a psychology program, this curriculum does not provide extensive technological training, students who possess an undergraduate degree in a technical or engineering fietd will be given preference for admission. Applicants with humanities or social science backgrounds will be considered, but may be required to supplement this program with remedial technical and scientific courses to provide the necessary prerequisites for program electives.

Each student will develop, in consultation with an adviser, an individual program consisting of 18 units of core courses plus 12 units of elective courses. This program will be designed to compliment the students' background, training and experience as well as their particular interests, and may include courses from a variety of Polytechnic departments in addition to the Environmental Psychology Program and Department of Social Sciences.

These individual programs may be developed from three broad areas of emphasis:
A. Human Behavior and the Large Scale Environment. Programs may include study in behavioral and social aspects of transportation planning and of energy use and planning.
B. Social Impact Assessment. This area will involve training in the nature of social response to environmental change, and methodology and use of social impact assessment in the broader context of environmental impact assessment.
C. Laboratory Research in Environmental Effects. Programs in this area may emphasize the use of laboratory techniques for analyses of the effects of various environmental stressors (i.e., noise, pollution, crowding) on human behavior.

Students will also be required to complete a master's thesis in the area of interest and pass a comprehensive psychology examination. The thesis may involve field research which stems from practicum experiences.

This 36-unit program may be completed in one year by full-time students or two to three years by part-time students.

Core Courses (18 units)
SS 908 Experimental Psychology I
SS 909 Experimental Psychology It
SS 920 Seminar in Psychology
SS 926 Environmental Psychology
MA 552 Applied Statistics I
MA 553 Applled Statistics II
Thesis (6 units)
SS $997 \quad$ Thesis for degree of Master of Science in
the History of Science

Electives (12 units)
Environmental Psychology Elective. One elective must be chosen from avaitable environmental psychology courses:
SS 915 Behavioral and Social Aspects of Environmental Psychology
SS 924 Social Impact Assessment
SS 928 Topics in Environmental Psychology

Free Electives

These courses may be taken from a wide range of courses chosen from the psychology program or other departments in consulation with an adviser to fit an overall program.

Advanced Psychology Courses

SS 910 Learning Theory
SS 911 Psychology of Language and
Communication
SS 912 Sensation and Perception
SS 913 Physiological Psychology
SS 914 Comparative Psychology
Doctoral Minor Requirements-The department offers doctoral minors in economics, history of science and psychology. Normally such a minor would entail at least twelve units of course work in the respective field. In each case, however, the prospective student should obtain the sponsorship of a member of the faculty of the Department of Social Sciences and arrange a specific program.

UNDERGRADUATE COURSES

HISTORY AND HISTORY OF SCIENCE AND TECHNOLOGY

SS 101 History of Westem Civilization, 1500-1815 3:0:3
SS 102 History of Westem Civilization I, 1815-1914 3:0:3 Courses SS 101-102 provide an integrated introduction to the political institutions, theories and practices, economic organizations and techniques, scientific and technological accomplishments, religious and ethical beliefs, and the inteliectual and artistic heritage of Western society between approximately 1500 and 1914. May be taken independently.

SS 104 Main Themes in Contemporary Worid History

3:0:3
Major sources of change, transformation and tension in 20th century. Discussions, readings, lectures, films on war, racism, scientific-technical revolution, socialism, communism, imperialism, the U.S. and revolutionary movements, modernization of underdeveloped societies, cold war, human ecology.

SS 110 The Renaissance and Reformation Era* 3:0:3 Investigation of dynamic changes in intellectual and artistic values, political and economic approaches, social and religious institutions from late Middle Ages to counterreformation. Guided reading and research. Discussion of selected topics. Prerequisite: SS 101 or equivalent.

SS 115 History of Africa*
3:0:3
Pre-colonial African history, origin of man; Egypt, Ethiopia, Kush and Southwest Asian ties, medieval West African kingdoms and trade across Sahara, coastal trading cities of East Africa, India, China. Slave trade, European conquest, struggle for independence. Contemporary African states in world politics.

SS 116 History of Latin America*

3:0:3 Early history of Mexico and Andean area. Spanish conquest and establishment of hacienda system throughout Latin America. Wars of independence. Social, cultural and political developments of last century. Latin America and United States.

SS 120 History of Tsarist Russia to the Revolution 3:0:3 Development of Russian state and society from earliest times. Structure and practice of Tsarism. Russia as "underdeveloped" society and special problems of modernization. Russia and West. Culture and literature with special emphasis on 19th ceentury fiction. Political, social, economic causes of breakdown in 1917.

SS 121 History of Soviet Union

3:0:3 Analysis of Revolution of 1917. Leninism in power. Industrialization, collectivization, ascendancy of Stalin. Soviet Union and West--from alliance to Cold War. Khrushchev and deStalinization. Soviet impact on underdeveloped world Contemporary trends in Soviet society.

SS 123 History of the United States: From Settlements to Reconstruction

3:0:3
The development of culture, politics and society from early European and Afro-American settlements through the postCivil War era. Emphasis will be placed on the interpretation of accessible "primary sources," which illuminate the convictions, ideologies and activities of not only leaders but ordinary Americans from the 17th to the mid-19th century.

SS 124 History of the United States: From Reconstruction to the Cold Wers

3:0:3 The emergence of provincial America to global authority. Particular attention to the interweaving of domestic struggles and foreign policies as the United States moved from the "Gilded Age," through the Progressive Era, the World Wars of the 20th century, the New Deal period and on to confrontation with revolutionary upheavals in the post World War tl epoch.

SS 126 Afro-American History*

Fole of black people in history. African cultural background, slavery as an institution, abolitionist movement, Civil War, reconstruction, segregation, migration, politics, African independence. Black Americans now and the future.

SS 127 American Economic History in the Industrial Era*

3:0:3
Economic history of the United States from late 19th century to present. Rise of industry, closing of frontier, progressive era, great depression and New Deal, world wars and aftermath. Particular attention to economic role of government.

SS 128 A History of Jazz*

3:0:3
History, appreciation and analysis of jazz as unique AfroAmerican art form in American heritage. Social and historical roots and interactions with other musical traditions. Contemporary trends as expressions of 20th century society and culture.

SS 129 Growth of the United States Constitution*
3:0:3 Historical examination of growth and unfolding of American constitutional system stressing political and economic fac-
tors shaping the law. Students expected to handle leading court decisions and related legal tests. Prerequisites: SS 123, or SS 124, or instructor's permission.

SS 130 The American Revolution*
3:0:3
Origins, nature and consequences of American Revolution. Growing struggle with Great Britain after 1760. Military history of revolution with emphasis on guerrilla as against conventional warfare. Political and economic history of revolution: role of nationalists and libertarians. Aftermath and consequences.

SS 132 Problems of American Foreign Policy* 3:0:3 Major problems in formulation and application of foreign policy from 18th-century origins to post-Cold War thaw: continental and overseas expansion, international rivalries, impact of domestic influences, diplomacy of infant republic, Monroe Doctrine, "manffest destiny," "white man's burden," open-door policy, "dollar diplomacy," involvement in worid wars and their settlements, Cold War and aftermath.

SS 135 History of Science and Technology: Antiquity to Galiteo

3:0:3
Science and technology from earliest times to Renaissance. Special emphasis on neolithic and medieval technology. achievements of ancient Greeks from pre-Socratics to Euclid, Copernican revolution, role of science and technology in expansion of Europe, influence of science on development of European thought.

SS 136 History of Science and Technology: Galileo to Darwin

3:0:3
Science and technology from the scientific revolution through the period of Lavoisier to the origins of the theory of evolution. Special emphasis on the achievements of Galifeo and Newton and on the beginnings of evolutionary thought, the organization of scientific inquiry, the impact of scientific thought on society in the $17 \mathrm{th}, 18$ th and early 19 th centuries, connections between technology and science.

SS 137 History of Science and Technology: Faraday to the Present

3:0:3
Science and technology from the early 19th century forward. The maturation of evolutionary thought and its consequences, the rise of the sciences of electricity and heat, relativity, quanturn mechanics, the development of celt theory, genetics and biochernistry.

SS 138 Technology, Science, Contemporary Society*

3.0:3

Comprehensive analysis of mutual relationships between technology, science and society, including ernergence of "big science," national styles in science and technology, social effects of recent technological and scientific developments, policy issues posed by restricted and unrestricted use of technology and science. Prerequisite: junior or senior standing.

SS 139 Technological Forecasting

3:0:3
Technological innovations. Forecasting methodologies for short- and intermedfate-range forecasting. Long-range trends and teohnology of post-industrial society. Discussion of alternate scenarios. Predictable and unpredictable consequences of innovations. Long-range technology forecasting. Students prepare forecast on topics of their choice. Prerequisite: junior or senior standing or instructor's permission.

SS 140 Science and Technology in America*
3:0:3
Colonial science, indifference to basic science during 19th century, technology and industrialization, recent accomplishments of American science and technology, emergence to superpower status.

SS 144 Colloquium in Intellectual History of 19h-Century Eurape*
 3:0:3

Investigation of European thought and artistic and scientific tendencies against background of political, economic, social institutions and changes. Discussions of selected sources in politics, economics, science, the arts.

SS 145 Colloquium in Twentieth-Century Thought 3:0:3 Investigation of contemporary ideas of Europe and America. Reading and evaluation of selected works in political theory, economic theory, philosophy of science, historiography, ethics, aesthetics, mass cultures.

SS 147 Colloquium in Imperiallsm*

3.0:3

Study of principal theortes of imperialism establishing (1) their premises, (2) their internal consistency, (3) their historical validity, especiaily in light of breakup of world empires since World War il. Course helps students establish their own criteria and judgrnents. Prerequisite: SS 104 or equivalent.

SS 148 History of Socialism and Communism* $\quad 3.0: 3$ Socialist movernent from founding of Second International to collapse in 1914 and revival in interwar years. Communist movement from theoretical controversies within social democracy before Worid War it to Eurocommunism. Examinations of socialist theories and ideologies, national parties, international organizations. Interpretive materials and sources in transiation. Prerequisite: SS 104 or equivalent.

SS 149 History of Marxism*

3:0:3
Analysis of major Marxian writing in philosophy, sociology, political economy, history from 19th-century intellectual and historical perspective. Marx's impact on intellectual generations of 1890 and 1914. Creation of Marxism by Engels and his circle. Manxism and working-class movements. Leading Marxists of 19th and 20th century: Bernstein, Kautsky, Hilferding, Lenin, Trotsky, Gramsci, Korsch, Althusser, Luxemburg, Marcuse. Marxism and contemporary social science. Prerequisite: SS 104 or equivalent.

SS 151 Introduction to Polltics ${ }^{*}$
3.0:3

Major issues in history of political philosophy: the state, nature of political obligation, scope of dissent. Origins and functions of American political systern. Clashing ideologies in light of norms of democratic society.

SS 153 Revolutions in Comparative Historical Perspectiva*

3:0:3
Eighteenth-century quest for reason and rights of man. American and French Revolutions compared. Nineteenth-century extenaion of radical tradition. Bolshevik revoilution as culmination and new departure. Twentieth century as age of global revolution in peasant societies of Third World. "Post-scarcity" transformation and possibilities in advanced West. Prerequisites: SS 104 or SS 101-102.

SS 154 Ruesia, China, the West*

3.0:3

Impact of modernization on traditional societies of Russia and China. Attraction of Western ideologies-liberatisn, socialism, communism and interaction with existing political cultures. Russian and Chinese revolutions compared. Differing visions and practices of Russian and Chinese communism. Sources of Sino-Soviet conflict. Russia and China as great powers, new relationships to West. Emerging diplomatic triangle-Moscow, Peking, Washington. Prerequisite: SS 104.

SS 157-158 Toples in Comparative Politics*
each 3:0:3 Selected topics for anaiysis and research, including politics of advanced and emerging areas: party systems in United States, Soviet Union, Peopie's Republic of China. National interests
and conflicts in international reiations, liberty and authority pluralism and power, administrative web; judicial institutions.

SS 161 Society and Film

3.0.3

The film viewed as docurnent and instrument of social structures and relations. The film as facet of mass culture and mass communication and as means of shaping and reffecting attitudes and values. Each of the foliowing historically framed subjects constitutes a separate course for credit: Depression America-Fantasy \& Reality; War-A Cross-Cultural Comparison; Weimar Germany in the Shadow of Fascism; Wartime Collapse of France-Genesis \& Retrospect; Postwar Italy-the Politics of Self-Griticism; Revolutions in the Third World; Coldwar America-Ego Affirmation \& Nightmare; Soviet Images of Russia's Past. Film screenings, readings, lectures and discussions. Lab fee required. May be sepeated for credit.

BEHAVIORAL SCIENCE

SS 175 Introduction to Sociology

 3:0:3An ejementary treatment of the influence of culture and social structure on human behavior. Topics include concepts of sociological analysis, types of human societies, social stratification, urban ecology, the social context of the environment crisis and the human impact of technology.

SS 177 Social Problems
3.0.3

Examination of social disorganization and deviant behavior in contemporary society. Investigation of specific problem areas: crime and juvenile delinquency, mental disorder, drug addiction alcoholism, suicide, family disorganization, poverty and unemployment. Comparison with cultures of other peoples andior simpler societies. Discussion of conflicting theories of causes for deviance and social disorganization.

SS 178 Minorities in the New World* 3.0.3

Historical, poitical, social and economic background to ethnic and race relations in United States and Latin America. Assimilationist, segregationist, pturalist policies, related attitudes. Position of Spanish-speaking minorities of Puerto Rican and Mexican descent in United States, compared with ethnic and racial relations in Puerto Rico, Cuba, Brazil.

SS 179 The Sociology of Human Disease*
3.0:3

The study of human disease in the context of social and biological adaptation. The disease "profiles" of the three major levels of man's social evolution, viz., hunters and gatherers, lowenergy agriculturalists, and states are considered from a broadly conceived human ecological framework. Recommendation: some background in biology and anthropology is desired.

SS 180 Sociology and Ubanization*
Origin and history of urbanization, ecology of contemporary cities and urban-rural relations, urbanism, famify patterns, personality development. Urbanism, socialeconomic stratification, distribution of power, comparative analysis of urbanization in non-Western world. Student projects on urban probiems.

SS 182 Man and the Environment
3:0:3
Development of broad ecological understanding of interaction of humans with non-human environment through survey of relevant topics: ecosystern, human interaction with ecosystem, human societies as self-regulating systems, attitudes toward nature, case studies in ecological history, present environmental crisis and attempts at resolution.

SS 185 Anthropology. Physical
3:0:3
The biosocial basis of human conduct seen in evolutionary perspective. The elementary genetic, demographic and ecological models necessary for the understanding of human behavior;
biology as an evoiutionary complex extending from the prosimian revolution through the neolithic revolution.

SS 186 Anthropology. Cultural 3:0:3
Social evolution from the hunting and gathering band through state society. A consideration of both variation and developmental trends in several human institutions such as kinship, economic organization, warfare, politics, religion and technology. Demographic and ecological variables receive primary stress.

SS 187 World Prehistory*

3:0,3
World history from ernergence of humans to deveiopment of early civilizations, introduction to archaeology, early man in old and new world patterns of migration, trade, rise of farming and sedentary life, development of civilizations in Mesopotamła, Egypt, China, India, Africa, Peru, Mexico, Guatemala,

SS 188 Social Change and Evolution* 3003
Theories of social change, "evolutionary" versus "functionalist" views. Evolution of social institutions through various stages of human history. Implications for solutions to contemporary social problems in both industrial societies and undardeveloped nations.

SS 189 Introduction to Psychology

 $3 \cdot 03$Scientific study of behavior. Extensive treatment of basic areas of learning, physiological psychology, sensory systems with introduction to areas of developmental, educational, abnorma! and social psychology. Lectures, class discussion, presentation of films, demonstrations of experiments.

SS190 Environmental Psychology $3: 0: 3$
The study of the way in which people use and are affected by their physical environments. includes research in natural environments as well as built urban areas. Research on personal space, privacy, territoriality, crowding and design-behavior relationships. Students are involved in field research to assess the fit of environments to human needs, using interview techniques, behavioral observation and unobtrusive measures. Prerequisite: SS 189 or equivaient.

SS 181 Sockal Psychology
3:0:3
Study of behavior as function of social stimulation. Nature of sociopsychological inquiry, particular emphasis on experimentai methods. Biological bases of social behavior, socialization processes, effects of social stimuli on perception and communication, group processes, attitude change, interpersonal bargalning. Student participation in experlments. Prerequisite: SS 189.

SS 182 Experimental Psychology I*
 2:3:3

Philosophy, theory and methods of measurement of the function of human and animal sensory and perceptual systems. Theoretical approaches to the problem of sensory thresholds: classical psychophysical theory, neural quantum theory and signal detection. Metric and nonmetric methods of scaling attifudes, preferences and judgments. Psychophysics of various sensory modalities. Prerequisite: SS 189.

SS 183 Experimental Psychology II*

23:3
Complex learning and vertal behavior. Students design, carty out and analyze experiments dealing with such complex behavior as learning verbal responses, concept formation, communication nets; perform original experiment (designed with heip of instructor). Laboratory reports required. Lecturea on both substance and mothod of experiments. Prerequisite: SS 192.

SS 194 Drugs and Behavior
$32(1) 3$
Mechanisms of action of various classes of drugs: tranqualizers, slimulants, analgesics, narcotics, hallucinogentics. Dis-
cussions of neurophysiological and pharmacological basis of drug action and behavioral effects of different drugs. Economic, historical, political, soctological, anthropological aspects of drug use and abuse. Prerequisites: SS 189 and CM 105.

SS 105 Abnormal Psychology*

3:0:3
Types of abnormal behavior: neurosis, psychosis, psychosomatic reactions, character disorders. Developrnental and social learning theor, biologicai, etiological models. Retation of methods of treatment of abnormal behavior to models of etiology. Prerequisite: SS 189.

SS 106 Streas and Relaxation* 23:3
Behavioral, phystological and anatomical changes that result from stress and the relationship between stress and disease. Techniques of reducing stress and anxiety such as Jacobsen's relaxation technique, meditation, yoga and biofeedback are examined. The laboratory gives the student the opportunity to measure the body's behavioral and physiological responses to stress and anxiety and to practice in the relaxation techniques including yoga and biofeedback training.

SS 497 Personality Davelopment*
3:0:3
Methods of inquiry relevant to study of personality. Personality development in terms of social learning variables. Dynamics and structure of personality, personality change. Examples of personality research on variables: authoritarianism, need tor achievement, self-concept. Prerequisite: SS 189.

SS 188 Psychology of Human Development*

$3: 0: 3$
Course of human development from birth to old age with speclal emphasis on effects of age on thinking, learning, social behavior. Current research related to implications for teaching and educational program. Prerequisite: SS 189.

SS 199 Organizational Behavior*

3:0:3
Study of behavior in industtial settings. Emphasis on informal and formal group dynamics: interpersonal relatlonships, supervision, leadership, communication theory, attitude measurement, creativity. Analysis of administration probiems by case studles and simulated situations. Prerequisite: SS 189.

SS203 Pbychology of Learning*

30:0:3
Process of response acquisition and maintenance in human beIngs and other animals. Concepts of reinforcement, extinction, schedules of reinforcement, generalization, discrimination tralning. Relationship of learning to emotion and motivation, transfer of training, retention and forgetting, concept learning, acquieition of ekills. Theories of learning and application of learning to other areas of psychology. Prerequisite: SS 189.

SS 204 Phyetological Paychology*

Introduction to relationshipa between physlology, anatomy, behavior. Ptiysiological, anatomical, biochemical bases for such functions a memory, learning, motivation, sleep, arousal, stress. Prerequislte: SS 189.

SS 205 Comparative Pbychology*
3:0:3
Introductlon to comparative study of behavior of different specles by ethological and behavioral approaches. Genetics of behavior, neural and hormonal controls of innate behavior, effects of early experience, generality of conditioning and learning. Prerequisite: SS 189.

SS 208 Human Cognition and
 Information Processing

$3: 0: 3$
Study of human cognitive capabilities and information processing. Topics inctude the structure of memory and the internal representation of knowledge, concept formation, symbol manlpulation, mental operations and schema, consciousness
and strategies for problem-solving. Special emphasis on cognittve development and on the role of language in thinking. Prerequisite: SS 189.

SS 211 Cultural Backgrounds of African Natlons* 3:0:3 Introduction to precolonial history and cultures of Africa. Impact of colonialism, changing forms of political, economic and socfal organization. Emergence of nationalism, PanAfricanism, movement for independence. Contemporay sociopolitical and economic developments with case studies and student projects on selected areas.

SS 212 Cultural Backgrounds of Nations of Asie* 3:0:3 Ecological and cuftural areas of Asia in relation to outtine of Asian history. Origin and development of urban society in Middle East and expansion into China and India. Classical cultures of China, India, Southeast Asia. Relations with surrounding tribesmen, Impact of Western imperiatism. Contemporary social, economic, political deveiopments with concentration and student projects on selected countries.

SS 213 History and Culture of Americens

 Called indians*3:0:3
Peopting of North America and cultural adaptations to its various regions. History of Indian relations with Spanish, French, Dutch, English in relation to mission activity, exploration, trade, wat. Westward movement of settiers and struggle for land. Changing patterns of Indian societies. Contemporary Indian ilife and sociopolitical orientations-rural and urban. Prerequisite: SS 185 or SS 186.

ECONOMICS

SS 251 Microeconomics

3:0:3
Introduction to supply and demand analysis. The allocation of resources and distribution of income. Various market structures: perfect competition, imperfect competition, oligopoly and monopoly.

SS252 Macroeconomics

3:0:3
Introduction to national income analyete. Employment and unemployment, inflation and growth. The federal government and fiscal policy, the Federal Reserve Board and monetary policy.

SS254 Economic Issues
3:0:3
issues such as unemployment and inflation, urban fiscal crisis, racial and sexual discrimination, pollution, poverty, imperialism and military spending. Role of state in economy.

SS 255 The Contemporary American

Economy: Bcom and Bust
$3: 0: 3$
Inflation, unemployment, growth and receasion. Special attention to interest rates, money, the stock market, wages, productivity, profit rates and the balance of payments. Role of military expenditures. Legacy of the Vietnam War. Evaluation of the Federal Reserve and government reguiation of the economy: spending, taxation, deficits and monetary policy. Wage-price controis, unfons and the future of economic planning. Prerequisite: SS 252 or permission of the instructor.

SS 257 History of Economic Thought*
3:0:3
Development of economic thought concentrating on various schools of thought that anticipated and prefigured modern economic analysis. Prerequisite: SS 252 or $\$ \mathbf{2 5 4}$ or equivatent.

SS 258 Comparative Economle Systems*
3:0:3
Introduction to the concepts of history of economic systems: capitalism, socialism, the market and planning. Analysis of in-
come distrlbution, resource allocation and modes of economic decision-making under alternative socioeconomic systems. Comparisons of centrally planned Communist economies, such as in the Soviet Union or Cuba, and the market-socialism of Yugoslavia with the regulated capitalist economy of the United States.

SS 258 Economic Development*

3:0:3
Consideration of theories of development for both advanced and underdeveloped economles, different historical paths to development, problems of technological change, capital accumutation, economic planning. Prerequisite: SS 252 or $\mathbf{S S}$ 254 or equivalent.

SS 282 Collective Bangaining
3:0:3
Study of institution of labor-management collectlve bargalning. Historical background, bases of power, day-to-day administration and bargaining. Intra-union bargaining, major substantive issues and problems, legislation, public policy implications, effects of technological progress, strike and its alternatives, comparisons with other bargaining settings (e.g. international negotiations).

SS 263 Labor Econonics
3:0:3
Theoretical and emplrical analysis of operation of labor markets in job-oriented culture. Labor force composition and trends, nature of labor markets, significance of wages and income security, trade unionism and collective bargaining, automation. Related issues, poverty, urban environments. Prerequisite: $\$ \mathbf{S 5} \mathbf{2 5}$ or permission of instructor.

SS 264 Urban Economics*

3:0:3
Contemporary American city and changing functions. Interrelation of population with houslng, jobs, transportation. Problems of public finance and services, land use, urban decay and renewal. Analytic tools to examine economic aspects and evaluete policy alternatives. Prerequisite: $\mathbf{\$ S} 251$ or instructor'a permission.

SS 285 Money and Banking*

3.0:3

Nature of money, gold and paper standards, commercial banks and Federal Peserve system, financial Institutions, balance of payments, exchange rates, international monetary order. Money, prlces, inflation, business fluctuations. Domestic and internetlonal monetary policy. Prerequisite: SS 251 or SS 252 or SS 254.

SS 288 Llbertarian Economics* 3:0:3 Liberlarian, free-market analysis of economy and government policy. Contrasts nature and consequences of government operation and intervention into economy with workings of the market. Alternative free market solutlons examined for problems now met by political intervention.

INTERDISCIPLINARY

SS 300-301 Gutded Reodings in Social Sciences

each 30:3
Selected problems in social sclences-history, economica, enthropology, sociology, psychology, politics, interdisciplinary studies. Individual or group projects under faculty supervision involving guided reading and/or research. For mature students of social sciences wishing to undertake specialized, independent study under tutorlal guidance. Prerequisite: Junior standing in soclel sciences or department's permission.
ss 310 Women in Current Perspective movement. Emphasis on biological basls of sex role differentiation, sex role acquisition in cross-cultural perspective, societal allocation of roles. Women's movement-hlstory and potentlal
for change in current atlitudes, lifestyles, the political and economic system.

SS 357 \dagger Technology Transfer to Developing Countrlas

3:0:3
Levels of technology: village, intermediate, advanced. Mechanisms of technology transfer to less developed countries. National and international means to stimulate or block transfer. Ecological, social, economic factors in technology selection and utilization. Technology and political influence. Case studies of recently industrializing nations.
Also listed under IE 357 and MG 757
SS $358 \dagger$ Human Resources Development In Developing Countries
$300: 3$
Spectrum of technology-related manpower needs in less developed countries. Education of engineers, technicians and skilled mechanics. Using foreign personnel, forelgn schools, 'braindrain' problems. Economic consequences. Comparisons of educational systems of Western, Eastern and developing countries. Design of curricula to suit national needs. Role of technical assistance programs. Forecasting of human resource needs.
Also listed under IE 358 and MG 758

SPECIAL TOPICS

The following special topics courses will be offered from time to time by the staff of the department or visiting scholars. The specific tities and prerequisites will be announced prior to registration. May be repeated for credit.

SS 361	Special Topics in Social Sciences** each 3.0:3
362	Special Topics in History*
363	Special Topics in History of Science
	and Technology*
364	Special Toplcs in Economics*
365	Special Topics in Psychology*

SS 500-501 Soclat Sciences Theory and Method I, II*
each 3:0:3
Historically oriented considerations of problems in developing integrated approach to social processes. Major formulations from ancient times through 17th century. Emergence of various social science disciplines in 18th and 19th centuries. Issues in contemporary theory and method. Similarities and contrasts between physical and social science. SS 501 prerequisite: SS 500.

SS 502-503 Social Selence Theory and

 Method Itl, IV*each 3.0.3
Seminar dealing with formulations of hypotheses and designing of research with methods for data collection and analysis specific to various social science disciplines. Practical experience in use of archival and other primary source materials, in formulation and analysis of questionnaires, and in techniques of interviewing and observation. Evaluation of various methods in relation to types of problems raised. Relation between theoretical framework and study design. SS 502 prerequisites: SS 500-501. SS 503 prerequisite: SS 502.

GRADUATE COURSES

HISTORY OF SCIENCE AND TECHNOLOGY

SS $600 \dagger$ History of Sclence and Technology: Antiquity to the Sclentific Revolution
 21/2.0.3

 History of biologicel and physical sciences from antiquity to Renaissence. Intensive introduction to issues, aims and tools of historian of science working in this period.SS 601 \dagger Introduction to History of Science and Technology: Scientifle Revolutlon to Darwn

21/20:3 History of biological and physical sciences from scientific revolution to period of Darwin. Intensive introduction to issues, airns and tools of historian of science working in this period.

SS 602 \dagger Seminar in History of Sclence
21/2003
Advanced problerns in history of science: development of quantification, historiography of science, history of ecology, science and social thought. Main topic chosen by students and instructor. Training in methods of archival research. Required regular reports leading to a major paper. Course may be taken twice for credit with different topical emphasis and permission of instructor.

SS615 \dagger Guided Reading in History of ldeas
21/2:0.3 Independent study of leading interpretive works and sources in intellectual history of Western civilization. Regular tutorial sessions and periodic student-faculty colloquia. Course may be taken twice for credit with different topical emphasis and permission of instructor. Comprehensive written examination.

SS 616 \dagger Guided Reading in History of Sctence

21/2:0:3 Independent study of leading interpretive works and sources in history of science. Regular tutorial sessions and periodic student-faculty coiloquia. Course may be taken twice for credit with different topical emphasis and permission of instructor. Comprehensive written examination.

SS620 \dagger History of Biology*

21/2:0:3
Upper-level course with discussion of principal issues to which biologists have addressed themselves, solutions which they have offered, and relationships between these solutions and both technical capacities of investigators and philosophical and other "sets" inherent in milieu of investigators.

SS $621 \dagger$ Development of Physical Theory

 from Maxwell to Einstein*$21 / 2: 0: 3$
Upper-level course investigating origin of knowledge that eventually fed to criticism of Newtonian synthesis and attempt to find suitabie, more general replacement.

SS $622 \dagger$ Theory and History*

21/2:0:3
Advanced study of techniques and philosophy of historical writing with special reference to work of widely known historians: Burckhardt, Croce, Meinecke, Bloch, Namier, Beard, Toynbee, Huizinga, Sarton, Pirenne.

SS $625 \dagger$ History of Technology: Antiqulty through Earty Industrial Revolution
 21/2:0:3
 SS 626† Mistory of Technology. Industrial Revolution to the Present
 21/2:0:3

These two courses involve detailed studies of the evolution of techniques and tools used in man's attempts to master environment. Introduction to reciprocal relationshipe between technology and other facets of society's economic and aocial structures, poltical policies: general cultural manifestattons. Parficular investigation of technological bases of historical change and interactions of sclence and technology. SS 625 prerequisite: SS 600 or equivalent. SS 626 prerequislie: SS 601 or equivalent.

SS 631 Seminar in Sociology of Sclence ${ }^{*}$
$21 / 2.0 .3$
Materials and sources from sociology and history of science deailing with mutual interactions between science and society, professionalization and specielization, growth of scientific institutions, models of scientific growth, problems associated with social organization of science.

SS635 $\mathbf{~ H i s t o r y ~ o f ~ P s y c h o l o g y * ~}$
21/2.0:3
Survey of psychology against background of poriods in which
principai modern schools and issues emerged. Treatment of early psychology as speculative discipline, essentially part of philosophy, following with differentiation of psychology into various fields. Prerequisites: SS 189-190 or equivaient or SS 135-136 or equivalent.

SS 840-641† Enwronmental Studies Seminar* 3.0:3 This seminar provides the opporlunity to investigate environmental issues in-depth by focusing on a specific topic each year. The aim of the seminar is to cultivate a more hotistic understanding of human societies in their ecological settings. Attention is given to such factors as weather, technology, poputation, social organization and political structure. Each student is responsible for a seminar paper. Guest participants on speciat topics. Prerequisite: SS 182 or other appropriate environment studies or permission of the instructor.

SS 672 Technologlcal Forecasting
21/2:0:3
Introduction to problems of technological forecasting. Morphological analysis, extrapolation of trends, heuristic and intuitive forecasts. Consideration of rational directing of technological change. Students prepare forecasts on topics of own choice.
Also listed under MG 672
SS $675 \dagger$ Technology Transfer to Developing Countries

21/2:0-3 Levels of technology: village, intermediate, advanced. Mechanisms of technology transfer to less developed countries. National and international means to stimulate or block transfer. Ecological, social and economic factors in technology selection and utilization. Technology and politicat influence. Case studies of recently industrializing nations.
Also Ilsted under IE 757 and MG 757

SS 676 \dagger Human Resource Development in Developing Countrifes

21 $120.0: 3$
Spectrum of technology-related manpower needs in less developed countries. Education of engineers, technicians and skilled mechanics. Using foreign personnet, foreign schools, "braindrain" problems. Economic consequences. Comparisons of educational systerns of Western, Eastern and developing countries. Design of curricula to suit national needs. Role of technical assistance programs. Forecasting of human resource needs.
Also listed under IE 758 and MG 758

ECONOMICS

SS 700t Industrial Organization of
American Economly* 2 $\quad 21 / 20: 3$
Measuring monopoly and competition in American economy. Effects of industrial structure on business performance-profit rates, output, etc., and business behavior-collusive practices, price discrimination, etc. Other economic and political implications of concentration. Antitrust and other governmental attempis at social control. Alternative theories of industrial organization. Available to undergraduate majors in social science. Prerequisite: instructor's permission.

SS 711 Advanced Economic Theory*
21/2:0:3
Advanced microtheory. Theory of utility and demand. Theory of prices and markets, profits, interest, capital, rent and wages. Monopoly and compelition. Methodology of economics. Pre requisite: SS 251 or permission of the instructor.

SS $713 \dagger$ Econometric Models and Methods* \quad 21/2:0:3 Econometric modets with and without stochastic formulation, principal component analysis, representation of economic phenomena, supply and demand, elernentary Keynesian model, consumption function. Linear hypothesis and multiple regres-
sions, tinear models with errors in variables, time series analysis, autoregressive and distributed lag models. Simuttaneous equation models. Spectral technique applications in economics. Prerequisites: SS 251 or SS 252, and MA 092 and MA 232, or equivalent.
Also listed under MG 674 and OR 674
SS 730 Mathematical Economics*
21/2:0:3
Contributions of mathematical analysis to traditional economic problems. Review of basic mathematical tools. Capital theory, economic growth, static equilibrium, individual behavior, welfare economics. Subjects of special interest to students. Each topic approached in specific manner. Assumptions underlying (axiomatic to) models sought in empirical evidence. Given these assumptions, necessary consequences deduced with some rigor.
Also listed under OR 730

PSYCHOLOGY

SS 808 \dagger Experimental Psychology I*

2:3:3
An examination of the basic methodology of experimental psychology. Topics inciude reseafch design, evaluation and treatment of experimental data. Psychophysics and scaling techniques, signal detection, simple and complex leaming in both humans and animals. Prerequisite: SS 189, equivalent or permission of instructor.

SSS09t Experimental Psychology II*
23:3
The purpose of this course is to acquaint students with sesearch methods, paradigms and procedures for taboratory and field research with human subjects. The substantive matter of the research covered will include social and environmental psychology. Students will be expected to perform research in laboratory and field settings using both experimental and quasi-experimental research designs. The emphasis of the course will be on developing research skills which can generalize to a wide variety of situations. Prerequisite: SS 908t, equivalent or permission of instructor.

SS910 9 Theorles of Leaming*
$21 / 20.0 .3$
Review of different theories of learning and associated experiments: application of theories to areas of programmed leaming, behavior therapy, attitude function, social interaction. Each student required to perform one experiment on learning under guidance of instructor. Avallable to undergraduate majors in social science. Prerequisite: SS 189 or equivalent.

SS $811 \dagger$ Psychology of Language and Communication

21/20:3
Analysis of verbal behavior, including methodological problems in analysis of language, verbal behavior in animals, anatomical and physiological aspects of speech apparatus, operant and respondent conditioning of verbal behavior, semantics, statistical approaches and mathematical models, contextual factors, pathology of speech. Each student required to do one experiment under guidance of instructor. Available to undergraduate majors in social science. Prerequisite: SS 189 or equivalent.

SS912 Sensation and Perception*
21/200:3
Review of different sensory systems: vision, audition, taste, smell, touch, temperature sensitivity, vestlbular, kinesthetic senses, their relation to nonsensory controlling stimuli auch as states of the organism, learning, social psychological vartables. Techniques of obtaining psychophysical data on each sensory system and relation of these techniques to theorles of discrimination. Available to undergraduate majors in social science. Prerequisite: SS 189 or equivaient or instructor'e permission.
Also ilisted under BE 675

SS913 Physlotogical Psychology*
21/20:3
Discussion of the physiological and anatomical bases of be havior. Topics such as memory, motivation, emotion, aloep, reward mechanisms, psychosurgery and higher cortical function are covered. Prerequisite: SS 189.

Also listed under BE 695

SS 914 Comparative Psychology*
21/20:0.3
Comparison of behavior of different species as function of ethological and psychological variables. Behavior genetics, neura! and hormonal control of behavior, behavioral consequences of special sensory structures, species specific behavior, development of behavior and concept of critical pertod, communication, and other social behavior and conditioning. Prerequisite: SS 189 or equivalent or instructor's permission.

Also listed under BE 676

SS 915 Behevtoral and Socletal Aspects of Transportation
$21 / 2: 0: 3$
Behavioral analysis of transportation decision-meking and travel characteristics. User needs in design of transportation systems including effects of such factors as crowding, social isolation, crime, comfort and convenience. Social impact of transport systems on communities. Prerequisite: undergraduate introductory psychology, or MG 601 or equivalent.
Also lifted under MG 856 and TR 756
SS920 Proseminarin Psychology 21/2:0:3
intensive review of major areas in psychology required of all majors. Topics include history and systems, sensation and perception, learning, deveiopmental and abnormal.

SS 924 Soclal Impact Assessment
21/2:0:3
This course will be concerned with the way in which physical changes within urban or rural settings affect social systems and group and individual behavior. issues to be discussed and considered inctude problems in measuring quality of life and sociel response to technology, and the use of alternative futures paradigms. Students will be expected to do an in-depth analysis of a problem in social impact and repont findings to the class.

SS 026 Environment Psychology

21/200:3
Readings and discussion on critical issues in personenvironment relations, including privacy, crowding and environmental design. Course work wial include a term paper and a major research profect, emphasizing the application of psychological research methods to practical design problems or specific environmental issues.

SS 928 Advanced Topics in Environmental

 Psychology21/2:0:3
The subject matter of this course will vary from year to year depending on the neds and interests of both students and instructors. Potential subjects include: Social Impacts of Transportation Systems, Stress and the Environment, Adversive Environmental Factors, Laboratory in Animal Leaming and the Effects of Pollution, The City - From a Psychological, Ecological and Historical Perspective, Applied Behavioral Analysis

SS 935 Engineering Projects Related to

Puble Administration ${ }^{*}$
each 3 units
See COOperative Program with New York University's Graduate School of Public Administration for details.

SS 997 Thesis for Degree of MasLer of Selence

 In the History of Science*each 3 units Independent research project dernonstrating scientific competence performed under guidanca of adviser.

FACULTY

I. Leonard Leeb, Associate Professor of History and Head of Social Sciences
B.A., University of Pennsylvania; Ph.D., Columbia University
History of the Netherlands, colonialism and imperialism, history of political thought

Marvin E Gettleman, Professor of History B.A., CCNY; M.A., Ph.D., The Johns Hopkins University History of the United States, American constitutional history, nationalism, modern radicalism

Helmut Gruber, Professor of History B.S., CCNY; M.A., Ph.D., Columbia University History of socialism and communism; intellectual, social and cultural history of 19th and 20th centuries; contemporary history

Frederlck C. Krelling, Professor of History of Science A.B., Hofstra College; A.M., Ph.D., New York University History of science, environmental studies, music history

Murray N. Rothbard, Professor of Economics A.B., M.A., Ph.D., Columbia University

Political and economic history, Austrian economics
Kurt Selzinger, Professor of Psychology
B.A., New York University; A.M., Ph.D., Columbia University
Behavior theory and learning, abnormal psychology, language behavior

Felix F. Strauss, Professor of History and Administrative Officer
B.A., Hofstra College; M.A., Ph.D., Columbia University Renaissance and reformation, entrepreneurial history, modern Central Europe

Lester O. Bumas, Associate Professor of Economics B.E.E., CCNY; Ph.D., New York University Labor economics, industrial relations, economic policy

Pamela E Kramer, Associate Professor of Psychology B.A., Bryn Mawr College; M.Ed., M.S., Tufts University; Ph.D., Yeshiva University Psychology of women, developmental psychology, psycholinguistics

Louls Menashe, Associate Professor of History B.A., CCNY; M.A., Ph.D., New York University Russian social history, revolutionary thought and polltics, contemporary history

David Mermelstein, Associate Professor of Economics B.A., Amherst College; Ph.D., Columbia University Radical economics, current macroeconomic problems, comparative economic systems, urban fiscal problems

Thomas B. Settle, Associate Professor of History of Science
B.A., M.A., Ph.D., Cornell University

History of science, Galilean studies, history of biology
Romualdas Sviedrys, Associate Professor of History of Technology
B.A., Corneli University; Licenciada, Universidad Nacional (Colombia, S.A.); Ph.D., The Johns Hopkins University
Technology forecasting and technology assessment, history of technology and science since 1750, technology and science in America
F. David Mulcahy, Assistant Professor of Anthropology B.A., M.A., Ph.D., University of Massachusetts Marginal communities, human ecology, cultural symbolism

Richard E Wener, Research Assistant Professor of Psychology
B.A., University of Wisconsin; M.S., Ph.D., University of Illinois, Chicago Circle
Environmental psychology, crowding, clinical psychology

ADJUNCT FACULTY

Edward A. DeCarbo, Dean of Students and Lecturer in Anthropology
B.S., F.S., Georgetown University; M.A., University of Chicago; M.A., Ph.D., Indiana University Cultural anthropology, expressive culture, African studies

Steven J. Freimark, Assistant Professor B.S., M.S., Polytechnic Institute of Brooklyn; M.A., Queens Coliege; Ph.D., SUNY (Stony Brook) Physiological psychology, stress and behavioral therapy

STATISTICS

Through the mathematics department, Polytechnic offers graduate study in the field of statistics leading to the M.S. and Ph.D. degrees. A full range of courses are offered in the areas of applied and mathematical statistics, supported by a range of elective courses in probability, operations research and topics in mathematics. Students may also take elective courses from other depariments, selected under the supervision of their graduate adviser.

The curriculum for each of the degree programs, along with descriptions of all non-thesis courses, is presented in the mathematics department section of this catalog.

COURSES

ST 995 Project for Degree of Master of

 Science in Statisticseach 3 units
Results of detailed study from the field of statistics carried out under the supervision of faculty adviser. Prerequisite: degree status. Reregistration fee, any part: 3-unit charge.

ST 997 Thesis for Degree of Master of Science (Statistics)
 each 3 units

Thesis presents results of independent investigation of suitable aspects of statistics. investigation of existing literature and related work must be included. Topic is selected with the help of a faculty adviser who also supervises the thesis work. Prerequisite: degree status. Reregistration fee, any part: $\}$-unit charge.

ST 999 Dissertation for Degree of Doctor of Philosophy (Statistics)

each 3 units
Results of independent investigation of some area of statistics. Must demonstrate ability to do creative work and inciude original research of caliber deemed worthy of publication in recognized scientific journals. Oral examination on subject of dissertation and related topics is required. Minimum of 24 dissertation units required for degree. Prerequisite: degree status and qualifying examination. Reregistration fee, any part: 3-unit charge.

SYSTEM ENGINEERING

System engineering is based on the body of theoretical knowledge that underlies the engineering of modern complex systems. System engineering is the application of this body of knowledge to the design of systems, usually involving the integration of several disciplines to achieve the desired design objective. The theoretical resources of these fields include selections from among the newer branches of applied mathematics, methods of modeling and simulation, methods for the analysis of signals and systems, the theories of communication and control, the techniques of optimization and of decision-making, and many of the facets of computer science.

Faced with a diverse and complex scientific environment, the system engineer may receive assignments crossing traditional lines of engineering applications. System engineering is presently applied in areas such as transportation, urban services, bioengineering, resource management, power and energy, and environmental and pollution control.

The course work in system engineering covers, in an interdisciplinary manner, the viewpoints, tools of analysis, and mathematical techniques of feedback control, instrumentation and measurement, analysis of data, optimization, communication of information, and simulation, stressing the use of analog and digital computers. The system engineering graduates' orientation and training enable them to participate in the analysis and solution of today's complex technological and societal problems.

The Department of Electrical Engineering and Computer Science administers the program leading to the degrees of master of science, engineer and doctor of philosophy in system engineering. Outstanding students should apply for tinancial aid in the form of research fellowships, teaching fellowships or partial tuition remission.

REQUIREMENTS FOR THE MASTER'S DEGREE

The entrance requirement for the master of science in system engineering is a bachelor's degree in engineering or science from an accredited institution, with a superior undergraduate record, including undergraduate courses in differential equations, probability, linear systems, feedback control and computer programming. Students with deficiencies in these areas may be admitted if they take appropriate introductory courses to remove these deficiencies.
Course Requirements Units

1. Three courses from among the following:
EL 531 Probability
EL610 Linear Systems
EL611 Signals, Systems and Transforms
EL 613 Applied Matrix Theory
EL 621 Feedback Control I
MA861 Statistical Inferencel9
2. Two approved one-year sequences, which may include the above courses. 6-12
3. Approved electives 21-15

A complete course of study, including the choice of the one-year sequences, should be arranged in consultation with an adviser. A master's thesis of 9 units may be included as part of the elective courses. At least 24 of the 36 units must be in courses in engineering subjects, computer science, or operations research.

For graduation, a minimum average of B must be obtained in the required courses (the three selected from the above list, plus those in the two one-year sequences). In addition, an overail average of B or better is required for all 36 units offered toward the degree.

The Electrical Engineering Graduate Student Manual should be consulted for more detailed rules and procedures, including student status, recommended electives and one-year sequences, current areas of research and disqualification for low grades.

REQUIREMENTS FOR THE ENGINEER DEGREE

This post-master's professional degree is intended for engineers who desire to advance their professional development and training beyond the master's degree, by taking additional graduate courses and carrying out a substantial design project.

A candidate for the engineer in system engineering degree must have a program of study approved by an advisory committee. This program of study must contain a minimum of 72 units beyond the B.S. degree, and the candidate must have satisfied the requirements for a master's degree in system engineering.

In all other respects, the procedures and rules concerning this degree are identical to those for the engineer degree described in the electrical engineering section of this catalog.

REQUIREMENTS FOR THE DOCTOR'S DEGREE

Graduate students who have demonstrated a high degree of schoiastic proficiency and have given evidence of ability for conducting independent research may consider extending their studies toward the doctorate.

Admission to Program-Admission to the program is based on qualifying examinations, which a student usually takes after having completed one year of graduate studies. Successful completion of the master's requirements in system engineering should provide adequate course preparation for the examinations.

Specific requirements for this degree parallel those for the Ph.D. in electrical engineering as described elsewhere in this catalog and in the deparmental Graduate Student Manual. These inciude course requirements, guidance committee formation, area examination, foreign language requirement, submission of the bound thesis, etc.

Qualifying Examinations-The format for these examinations is described in connection with the Ph.D. in electrical engineering. Principal areas of concentration for system engineering candidates are communications, automatic control, computers and mathematical modeling and optimization. Current information about examination topics should be obtained from the doctoral adviser.

GRADUATE COURSES

SE 997 Thesis for Degree of Master of

Sclence in System Engineering
-ach 3 units independent engineering project demonstrating professlonal maturity performed under guidance of adviser. Oral thesis defense and formal, bound thesis volume required. Registration of 9 units required; continuous thesis regisiration required. Prerequisite: degree candidacy.

SE 988 Project for Degree of Engineer in System Englneering
 each 3 units

 Comprehensive planning and design of engineering project under guidance of faculty adviser. Emphasis on up-to-date techniques. Orai examination and formal, bound report required. Scope of project is $8-12$ units by prior agreement with adviser; continuous project registration required. Prerequisite: degree candidacy.
SE 898 Disserlation for Degree of Doctor of

 Philosophy in System Engineerngeach 3 unlts Original investlgation of system engineering problem. Must demonstrate creatlvity and inciude feature of originality and utility worthy of publication in recognized journal. Candidate must successfully defend dissertation orally. Registration of 24 units required; continuous diseertation reglstration required. Registration beyond 12 th unit requires passing of area examination. Prerequisites: degree candidacy and passing of qualifying examination.

PARTICIPATING FACULTY

Frank Kazin, Professor of System Engineering and Director of System Engineering Program

Joseph J. Bonglomo, Jr., Professor of Electrical Engineering

Rudolf F. Drenick, Professor of System Engineering
Norbert Hauser, Professor of Industrial Engineering and Management Science

Walter Helly, Professor of Operations Research
John H. K. Kao, Professor of Industrial Engineering
Frank J. Lupo, Professor of Electrical Engineering
William R. McShane, Professor of Transportation and System Engineering

Athanasios Papoulis, Professor of Electrical Engineering

Philip E. Sarachik, Professor of Electrical Engineering
Leonard G. Shaw, Professor of Electrical Engineering
Martin L. Shooman, Professor of Electrical Engineering and Computer Science

Jaachim I. Weinding, Professor of Operations
Research and System Engineering
Dante C. Youla, Professor of Electrical Engineering
Richard A. Haddad, Associate Professor of Electrical Engineering

Gerald Weiss, Associate Professor of Electrical Engineering

Christodoulos Chemzas, Assistant Professor of Electrical Engineering

TRANSPORTATION MANAGEMENT

The field of transportation today encompasses not only the application of engineering approaches to transportation problems, but also the management of the sundry private and public operators, planning agencies, consulting services and government departments that comprise the industry.

For those students whose goals lie in the management of technology rather than the direct engineering of it in the transportation sector, this unique program provides graduate training specifically designed for their needs. The curriculum provides a mixture of basic management skills, basic knowledge of the transportation industry and a core of specially designed courses in management and policy applications in the transportation field. The students emerge with a critical combination of skills preparing them for a managerial or policy-level position in any sector of the transportation industry.

The program emphasizes the overall management of transportation systems rather than concentrating on a single segment such as private trucking firms and goods distribution. It views the transportation manager as one who may find the field of application in an alrline, a publicly or privately operated transit system, a metropolitan planning organization, a federal, state, or local government unit, a public authority or any one of the myriad organizations involved in the industry. The program is intended to produce a graduate who has a thorough knowledge of the characteristics of transportation systems, the systems by which they are planned, built and operated and the ability to apply basic managerial principles to the optimizing of these systems.

The program is jointly administered by the Department of Transportation Planning and Engineering of the Division of Engineering and the Division of Management. It is a 45-unit program leading to the master of science, an undesignated degree. Polytechnic has petitioned the New York State Department of Education for registration of the degree as a master of science in transportation management and will award the designated degree as soon as approval is received.

Whlle there is at present no doctoral degree in transportation management, completion of this program fulfills from one-half to two-thirds of the course requirements for the Ph.D. in transportation planning and en-
gineering. Interested students should arrange an interview with a member of the faculty for further information and specific guidance.

ADMISSIONS

To be eligible for admission in this transportation management program, the applicant must hold a baccalaureate degree or its equivalent from an accredited institution in one of the following areas: engineering, physical science, liberal arts, business or public administration or social sciences. Students are expected to have an adequate background in mathematics, including probability and statistics. Students lacking such background may be admitted, subject to taking courses making up the deficiency. Such courses are in addition to other normal degree requirements.

Students are expected to have basic skills in English that are adequate for the preparation and presentation of reports and papers. Such skills will be evaluated in appropriate courses together with technical material. All foreign students admitted to the program will be required to take a written examination In English before their first registration. Based on the evaluation of that examination, they may be required to take one and in rare cases, two additional courses in English as a second language for which no graduate credit will be given.

GRADE REQUIREMENTS

To earn a degree, students enrolled in the program are required to maintain:

1. An overall average of B in courses submitted for the degree.
2. An overall average of B in those courses required for the degree.
3. An overall average of B in guided studies (readings, project, thesis) submitted for the degree.

Grading is on the basis of A, B, C or F. A student whose overall average falls below a B may be placed on graduate probation. Such students must have written approval of the chairman of the program committee and the dean of graduate studies to register for subsequent semesters. Incomplete grades and withdrawals are granted in accordance with institute policy.

DEGREE REQUIREMENTS

The master of science program in transportation management requires 45 units of work beyond the baccalaureate, as follows:

Required of all students for the master of science:

		Units
MG 600	Management Process	3
MG 601	Organizational Behavior	3
MG 700	Managerial Accounting	3
TR 601	Travel Demand Forecasting	3
TR 750	Transportation Economics	3
TR 751/MG 853	Transportation Finance	3
TR 660	Urban Public Transportation	3
TR 757/MG 857	Transportation Management	3
		24

Electives in the amount of 18 units may be selected from the listing below, with the approval of the student's adviser. Normally, the student will be required to select at least two courses from each of two areas of specialization. The student must select a minimum of two TR courses and two MG courses. All courses are 3 units.

A. Policy Development

MG 740	Process of Policy Formation
MG 744	Social Forecasting
MG 746	Public Sector Management
MG 800	Policy Analysis and Planning
TR 758/MG 858	Transportation Policy and Decision-
MG 840	Making
Financial Aspects of Public Policy	

B. Organizational Development

MG 622	Personnel Psychology
MG 623	Organizational Change, Training and
	Development
MG 624	Organizational Development

C. Project Management

MG $810 \quad$ Project Planning and Control
MG $811 \quad$ Cost Accounting in a Project Environment
MG $820 \quad$ Project Management
MG 825 Construction Administration
MG 826 Construction Estimates and Costs
MG 827 Specifications and Contracts
D. Transportation and Urban Planning

TR $600 \quad$ Transportation Studies and Characteristics
TR 602 Urban Transportation Planning
TR 603 Computer Packages in Transporta-
TR 630 tion and Traffic Planning
TR $630 \quad$ Principles of Urban and Regional Planning
TR $631 \quad$ Methods of Urban and Regional Analysis in Pianning
TR $640 \quad$ Environmental Analysis of Transportation Projects

E. Transportation Economics

TR 752/MG 855	Analysis of Transportation Markets
TR 755/MG 852	Legal and Regulatory Aspects of Transportation
TR 756/MG 856/ SS 915	
	Behavioral and Sociological Aspects of Transportation
TR 661	Intercity Passenger and Freight Transportation
F. Transportation Facility Deskgn and Operation	
TR 600	Transportation Studies and
TR 670	Planning and Design of Terminals
TR 671	Airport Planning and Design
TR 701	Traffic Control, Operations and
	Management
TR 715	Urban Goods Movement
TR 866	Transportation System Satety

All students are required to take a 3-unit project in transportation management:
TM 962 Independent Project or Paper in , Transportation Management

3 units
In lieu of the required project and two electives, some students may elect to complete a formal thesis of 9 units:
TM $997 \quad$ Thesis in Transportation Management 3 units each

In lieu of up to two elective courses, students may choose to complete up to two reading courses:

TM $901-902$	Readings in Transportation Manage-
	ment 1, 11

While registered in the program, full-time students are required to continuously register for a noncredit discussion and presentation seminar:
TM 951 Seminar in Transportation
Management
nc

ADVISORY COMMTTEE

To assist in the development of the program, an advisory committee, consisting of noted professionals in transportation management and policy positions, has been formed. They meet about once each semester with program faculty to discuss curriculum development, placement of graduates and related matters.

COURSES

The following courses have been specifically developed for the transportation management program:

TR 751/MG 853 Transportation Finance 21/2:013

Material is approached from a public finance perspective, including a review of those economic theories and analytical techniques that are of particular relevance to transportation. Special attention is given to such areas as (a) the equity vs. efficiency question in transport finance (b) general vs. esarmarked revenue methods (c) the valid (and invalid) uses of cost-benefit and costeffectiveness studies and (d) peak losd (marginal cost) pricing.

TR 752/MG 855 Anelysis of Transportation Markets 21/2,0:3 Application of the precepts of marketing to public and private transportation operations. Basic market structure of major modes is reviewed to demonstrate how gaining and using market data can increase efficiency and profitability of operations. Attention is given to (a) how factors that affect modal choice are determined and (b) how this information can be integrated into a "marketing plan" that includes service, pricing and promotional aspects.

TR 755/MG 852 Legal and Regulatory Aspects of

 Transportation21/2:0:3 An in-depth treatment of the origins, causes and effects of regulation on transportation and society in the U.S. Economic and conditional bases for transportation regulation. The legal basis, structure and function of federal, state and local regulating bodies and their interaction with transportation industries. Current controversies concerning the deregulation of sectors of the transportation industry.

TR 756/MG 856 Behavioral and Sociological Aspects of Transportation
 21/2:0:3

Behavioral analysis of transportation decision-making and travel characteristics. Sociological factors involved in travel decisions-crime, social isolation, comfort and convenience. Aloo llated under SS 105

TR 757MG 858 Transportation Management 21/2:0:3
Management problems in the private and public transportation sectors; discussion of various types and forms of transportation organizations-planning organizations, modal operators, consulting firms, etc.--and treatment of organiza. tional problems and issues from the managerial perspective. Private vs. pubflc transportation operators and agencies. Public and semi-public operating authorities: legal basis, fiscal structure, purpose, interaction with private operators. Prerequisites: MG 601 and TR 660, or equivalent, or adviser's approval.

TR 75emg 858 Transportation Policy and Declsion-Making

21/2:0:3
A high-level treatment of policy formulation and decisionmaking in the transportation industry on several levels: federal policy, state and local policy, individual operating policles. Course uses an intensive cese-study approach in a seminar or discussion formet. Emphasis is on mass trensit operations.

GUIDED STUDIES

Guided studies are individually supervised student offorts under the guidance of a faculty member or faculty committee. Before registering for one of these offerings, the student should have an accepted topic formulated in conjunction with the faculty member who will supervise.

TM 962 Independent Project or Paper in

 Transportation Management3 units A one-semester guided effort resulting in a written report submitted at the semester's end. Project mey entall the study of a particular problem or issue in transportation management, or a case-study of a type of or particular transportation organization. A bound report is not required. Prerequisite: adviser's approval.

TM 901-902 Readinga in Transportation

 Management I, IIeach 3 units A guided studies effort on a topic or subject related to transportation management but not covered in detail in the regular courses. Research is primarily conducted through the litera-
ture and other secondary sources. The student is required to submit a written report at the end of the semester. Prerequisite: adviser's approval.

TR 951 Seminar in Transportation Management ne A regular forum in which students present and discuss the results of their project and other independent research. Distirguished speakers are also invited to present talks and discussions on topics of current interest.

TM 997 Thesis in Transportation

 Management
each 3 unlits

A significant piece of independent research under the guldance of a faculty committee. Total thesis is 9 units and results in a bound document that must be orally defended. Prerequisite: adviser's approval.

All other couraes which are part of the transportation management progrem are described under the transportation planning and engineering or management sections of thls catalog.

PARTICIPATING FACULTY

Louis J. Pignataro, Professor and Head of Transportation Planning and Engineering and Director of Transportation Training and Research Center
A. George Schillinger, Associate Professor of Management

Edmund J. Cantilli, Professor of Transportation Planning

Norbert Hauser, Professor of Industrial Engineering, Operations Research and Management
William R. McShane, Professor of Planning and System Engineering and Associate Director of Transportation Training and Research Center
Anthony J. Wiener, Professor of Management
Seymour Kaplan, Associate Professor of Industrial Engineering, Operations Research and Management
Haroid G. Kaufman, Research Associate Professor of Management
John C. Falcocchio, Associate Professor of Transportation and Engineering
Philip A. Habib, Associate Professor of Transportation Engineering
Roger P. Roess, Associate Professor of Transporlation Engineering and Member of Transportation Management Program Committee
William H. Crowell, Assistant Professor of Transportation Economics and Chairman of Transportation Management Program Committee
David A. Schrier, Assistant Professor and Director of Organizational Behavior Program Management
Dipayan Bhattacharya, Academic Associate, Management

ADJUNCT FACULTY

Joseph Kaming, Adjunct Professor of Transportation Planning and Engineering
William A. Allison, Adjunct Professor of Transportation Planning and Engineering

TRANSPORTATION PLANNING AND ENGINEERING

The Department of Transportation Planning and Engineering offers programs leading to the degrees of master of sclence in transportation planning and engineering, engineer in transportation engineering and doctor of philosophy in transportation planning and engineering.

The students of transportation live in a boundiess workshop in which they are able to experience first hand many of the problems involved in the movement of peoples and goods, both within congested uban areas and between them. The facilities, regulations and controts which are discussed in the context of lectures and problems, are on display in abundance in the activities of each passing day. Education in transportation is unique in the degree of feedback and personal involvement which the student experiences. This is a great asset in that virtually every student is familiar with the transportation medium.

Transportation planning and engineering is quite unfike many of the traditional engineering fields. In transportation, the professional works in a fleld which is intimately tnvolved with human behavior and reactions. It is possible to compute the braking distance for e glven physical situation, but each driver has a different reaction time. The transportation professional must discern and predict how people will travel, or desire to travel, at any given time. This involves the study and understanding of the basic factors that motivate people to travel and that motivate people to travel to particular places on particular modes of transportation. The prediction of transportation demand is complex, and because of the uncertainties of the human element, it is less precise than other engineering cralts, such as the resolution of stresses on a structure, in which all physical loads and conditions can olten be preclsely stated. The human element expresses itself in myriad ways. The transportation engineer cannot provide positive control of transportation systems. The placement of a stop sign at an intersection does not guarantee that every vehicle approaching it stops. An air traffic controller can gulde a pilot, but there are no fail-safe devices that can physically prevent a pilot from flying a plane improperly.

Transportation planning and engineering is then best described as the application of traditional planning and engineering approaches to the solution of prob-
lems involving a strong human element. While all of the methods and techniques employed must be modified to account for this human element, the approach to problem investigation and solution is very much an engineering one. Transportation is a vifal, living field for students to apply their efforts and is weil suited to those having undergraduate degrees in engineering and/or science, as well as to many with backgrounds in the arts and social sciences. It is a broad field requiring an inter-disciplinary approach for effective problem solving.

The primary goal of the academic program is to train transportation planners and engineers who are able to plan and functionally design facilities and operational controls that are capable of satisfying the public demand for transportation services. This must be done with full awareness of the human element and in such a way as to optimize the use of public funds, while protecting the environment and energy resources, and causing minimal social disruption. This is a chalienging goal for the program, but it is the same challenge that must be met by every professional working in the field.

The program stresses the multi-modal approach to transportation and maintains strong curricula in highway and traffic engineering, public transportation engineering, transportation planning, transportation safety and urban and regional planning. The student is exposed to an atmosphere that provides a meaningful integration of practical and theoretical approaches. A combination of classroom presentations and practical problem solutions strengthens the overall education.

DEPARTMENT REQUIREMENTS

To be eligible for admission as a graduate student, an applicant must hold a baccalaureate degree or its equivalent from an acceptable institution. The department admits students with undergraduate degrees in engineering, the sciences, social sciences and the arts.

Students are expected to have an sdequate background in mathematics, inciuding probability and statistics. Students lacking a background in probability and ststistics will be admitted but must take MA 551, Applied Statistics, in addition to other degree require-
ments. Credit toward a graduate degree will not be given for this course. Where additional background in mathematics is lacking, admission may be subject to the completion of specified undergraduate courses to make up the deficiency.

Students are expected to have basic skilis in English that are adequate for the preparation of reports and papers. Such skills will be evaluated in appropriate courses together with technical material. All foreign students admitted to the department will be required to take an examination in English before their first registration. Based on the evaluation of that examination, they may be required to take one and in rare cases two additional courses in English as a second language for which no graduate credit will be given.

Registration statue-Students are admitted to the department in either degree, nondegree or special status.

Grade requirements-To earn a graduate degree, institute regulations require that the student maintain an average of B or better for all course work submitted for the degree, and a B or better average in individual guided studies efforts submitted for the degree (readings, project, thesis, dissertation). Averages are separately computed for course work and guided studies.

In addition to instltute grade requirements, the department requires an overall average of B or better in required courses taken toward a degree.

DEGREE REQUIREMENTS FOR THE MASTER'S DEGREE IN TRANSPORTATION PLANNING AND ENGINEERING

The M.S. degree in transportation planning and engineering requires 36 units of graduate work beyond the baccalaureate, half of which are required courses, half of which are elective. Full-time students, particularly those studying under research fellowships, may be re quired to do a project for which they would receive three units as part of their electives.

The following courses are required of all students:

		Unlta
TR 600	Transportation Studies and	3
	Characteristics	3
TR 601	Travel Demand Forecasting	3
TR 630	Urban and Regional Planning	
TR 629	Principles	3
TR 701	Transportation Workshop	3
TR 750	Managementions, Control and Transportation Economics	3
		$\frac{3}{3}$

Students are expected to consult their advisers in selecting electives. Elective courses should be selected to provide the student with a cohesive body of knowl-
edge in one or more areas of interest. The selection of electives is subject to the approval of the student's asslgned adviser.

The residency requirement for the M.S. degree is 27 units; i.e., a minimum of 27 units of work must be taken at Polytechnic. The student may transfer up to 9 units of acceptable course work from other institutions subject to the department's approval. Students may apply for transfer credit through the dean of graduate studies after they have completed 12 units of appropriate graduate courses at Polytechnic. To be eligible for transfer credit, the course in question must be relevant to the transportation program, and the student must have received a B or better in the course. Courses graded on a pass-fail basis will not be considered for transfer credit unless a detailed course evaluation from the instructor is provided. All transfer credit requests must be accompanied by an official transcript from the transferring institution.

In lieu of 6 transfer credits, the student may request validation of up to 6 units of graduate credit. To qualify for validation, the student must demonstrate an acquired knowledge or ability in an area covered by one of the courses offered by the department. The student is then examined in the area (by written and/or oral examination), and validation credit is awarded or denied on the basis of the examination by the dean of graduate studies. Students must pay a fee for each such examination. In no case may the total of transier and validation credits exceed nine units.

REQUIREMENTS FOR THE ENGINEER DEGREE IN TRANSPORTATION ENGINEERING

The engineer degree in transportation engineering is intended to be a terminal degree for those students wishing advanced practical education beyond the M.S. level. Candidates for the engineer degree are required to have an M.S. in transportation planning and engineering or its equlvalent and an undergraduate degree in engineering. The degree requires an additional 30 units of course work and a 6 -unit engineering project beyond the M.S. degree. In certain cases, an appropriate M.S. thesis (not project) or evidence of professional experlence may be substituted for the engineering project, in which case 6 additional units of course work are required.

All courses required for the M.S. degree, or their equivalents, must be completed to earn the engineer degree. In most cases, this would have been done as part of the candidate's M.S. study. In rare cases where this is not the case, any such courses not yet completed must be taken as part of the engineer degree program of study.

Residency requirements for the engineer degree are 27 units of study at Polytechnic. No more than 9 units of transfer and validation credit may be awarded toward this degree, with a maximum of 6 validation units.

DOCTOR OF PHILOSOPHY DEGREE IN TRANSPORTATION PLANNING AND ENGINEERING

The Ph.D. in transportation planning and engineering requires 90 units of graduate study beyond the bachelor's degree. The 90 units are made up of the following:

1. A 30 -unit major in transportation planning and engineering, including all of the courses required for the M.S. degree.
2. Two 15-unit minors in related areas, one of which may be a specific area of focus within the transportation field.
3. A 30 -unit dissertation, which must be an original piece of research that meaningfully advances the state-of-the-art in an area of transportation study.

It must be stressed that these are minimum requirements. Many students, particularly those entering with advanced degrees in other fields, may require additional course work in support of their dissertation development and to ensure passage of the Ph.D. qualifying examination, described below. Applicants to the Ph.D. program are urged to make an appointment with a faculty adviser for individual consultation and recommendations.

Before being permitted to register for dissertation units, the çandidate must pass a comprehensive Ph.D. qualifying examination. The examination is given once a year, usually in June, and consists of several written portions and an oral part. Copies of previous examinations are availabie on request from the department office to aid the student in preparation for this examination.

Students normally take the qualitying examination after their first year of full-time course work (or its parttime equivalent) is completed. All students who wish to take the examination are permitted to do so once they have been advised. Subsequent attempts are at the discretion of the department and in no case are more than three attempts permitted.

Ph.D. candidates must also qualify in one foreign language, which entails translation of a part of a technical book or article with the aid of a dictionary.

The residency requirement for the Ph.D. is 30 units, which must include the dissertation. Thus, a candidate is only required to complete the dissertation at Polytechnic to earn the degree here. Any and all course work taken at other institutions that is appropriate for either the major or minors may be transferred provided they are of graduate level and a grade of B or better was achieved.

In support of dissertation research, a doctoral committee is formed to advise each student. Because of the interdisciplinary nature of transportation research, advisory committees Include members of the faculty
from many programs, as appropriate, including the following: mechanical and aerospace engineering, civil engineering, electrical engineering, management, mathematics, operations research, social sciences, transportation planning and engineering.

It should be emphasized that Ph.D. programs are individually tailored to the needs of the student and to their research interests. A continuing review of such programs is maintained throughout the student's course of study, and modifications are made as needed. A close relationship between the student and faculty adviser is recommended for all students at this level.

PROGRAM FOR INTERNATIONAL STUDIES IN REGIONAL AND TRANSPORTATION DEVELOPMENT

This program is intended to provide the international student with a curriculum specifically tailored to individual needs. The program requires 54 units (3 semesters, full-time) of study and results in the award of the master of science in transportation planning and engineering and the diploma in international studies in regional and transport development.

Admission and other requirements for this program are similar to the standard M.S. degree program, except that students are advised to submit applications for admission by:

- December 1-for admission in summer or fall of the following year
- October 1-for admission in the spring of the following year

This will assure that visa arrangements and other matters can be handled without difficulty or delay.

The residency requirement for the program is 45 units (that is, a minlmum of 45 units of work must be taken at Polytechnic). Transfer and validation regulations are the same as for all degree programs.

The program is intended to serve international students sponsored by their governments, foreign universities or other organizations as well as those who are supporting themselves. The 54 units of work include 21 units of specifically required courses, 24 units of elective courses and a 9 -unit thesis. The thesis will most often involve problem-oriented work on a subject agreed on by the student's sponsor and the department. Topics are generally transportation subjects related to the problems of developing economics, offering the international student the opportunity to do significant work on a topic of critical importance to that student's home country. The program concentrates on four areas of study: project management and economics, energy, planning, design and operations.

Required of all students:

A. Project Menagement and Economics
 MG 600 Management Process
 MG 740 Process of Policy Formulation
 MG 820 Project Management
 TR 834 Financing Transportation Projects in Developing Countries
 TR 882 Construction of Transportation Projects in Developing Countries

B. Transportation Planning

TR 631 Methods of Urban and Regional Analysis in Planning
TR 715 Urban Goods Movement
C. Facility Design and Operation

TR 865 Design of Rall Facilities
TR 670 Planning and Design of Terminals
TR 671 Airport Planning and Design
TR 881 Design and Construction of Roads in Developing Countries
D. Energy

TR 830 Energy in the Transportation Sector
ES 927 Energy Policy Issues
ES 928 Energy Resource Distribution and Conversion
ES 929 Energy Alternatives for Developing Countries

The student is also required to complete a 9 -unit thesis (TR 997) and must register continuously for TR 951, 952, Transportation Seminar, a non-credit discussion forum, while enrolled in the program.

Those students wishing to enter this special program should note "International Studies in Transportation" on their admission applications. Such applications will be handled separately from those for normal degree programs.

CERTIFICATE PROGRAMS

The department offers graduate certificates to students completing from 12 to 15 units of course work in a concentrated sub-area of transportation planning
and engineering. Certificate programs are geared to the students who do not wish to commit themselves to a full advanced degree program. These may be students with B.S. degrees who wish to specialize in one aspect of transportation, or those already holding advanced degrees who wish to develop an additional specialty and receive some formal certification for it. Students who enroll in certificate programs may apply for transfer to degree programs without loss of credit, assuming the courses taken are appropriate to the degree.

Students enrolling in certificate programs will normally apply as non-matriculating students. An appropriate B.S. or B.A. degree is required. The Department of Transportation Planning and Engineering offers the following certificates:

Traffic Engineering Certificate
(12 units)
Required:
TR 701 Traffic Control, Operations and Management
TR 703 Traffic Studies
TR 704 Traffic Capacity and Design
Plus 1 of:
TR 710 Design of Traffic Facilities
TR 715 Urban Gpods Movement
TR 865 Highway Traffic Safety
Transportation Planning Certificate
(15 units)
Required:
TR 600 Transportation Studies and Characteristics
TR 601 Travel Demand Forecasting
TR 602 Urban Transportation Planning
TR 701 Traffic Control, Operations and
Management
Plus 1 of:
TR 603 Computer Packages in Transportation and Traffic Planning
TR 630 Principles of Urban and Regional Planning
TR 845 Techniques in Transportation Analysis
Transportation Facility Design and
Operation
Required:
TR 660 Urban Public Transportation
TR 670 Planning and Design of Terminals
TR 671 Airport Planning and Design
TR 710 Design of Traffic Facilities
Plus 1 of:
TR 685 Design of Rail Facilities
TR 704 Tratfic Capacity and Design
Urban and Reglonal Plenning
(12 units)
Required:
TR 630 Principles of Urban and Regional Planning
TR 631 Methods of Urban and Regional Analysis in Planning
TR 632 Urban and Regional Science in Transportation
TR 640 Environmental Analysis of Transportation Projects

Transportatlon Safety and	
Required:	
TR 640	Environmental Analysis of Transportation Projects
TR 846	Transportation System Safety
or	
TR 866	Transportation Safety
TR 865	Highway Traffic Safety
Plus 1 of:	
TR 641	Environmental Law and Technology
TR 703	Traffic Studies
TR 830	Energy in the Transportation Sector

Public Transportation (12 units) Required:
TR 660 Urban Public Transportation
Plus 3 of:
TR 661 Intercity Passenger and Freight Transportation
TR 662 Public Transportation in Small Towns and Rural Areas
TR 665 Design of Rail Facilities
TR 670 Planning and Design of Terminals
TR 671 Airport Planning and Design
TR 864 Transportation Safety
TR 866 Transportation System Safety
Transportation Economlcs and Management
(15 units)
Required:
MG 600 Management Process
MG 601 Organizational Behavior
TR 751 Transportation Finance
Plus 2 of:
TR 750 Transportation Economics
TR 752 Analysis of Transportation Markets
TR 755 Legal and Regulatory Aspects of Transportation
TR 756 Behavioral Aspects of Transportation
Energy Policy and Englneering (12 units)
Required: .
ES 927 Energy Policy Issues
ES 928 Energy Resource Distribution and Conversion
TR 830 Energy in the Transportation Sector
Plus 1 of:
TR 660 Utan Public Transportation
TR 715 Urban Goods Movement
TR 750 Transportation Economics
Units earned toward certificate programs are transferable to degree programs if they are applicable. No course, however, may be credited toward more than one certificate program.

RESEARCH AND STUDENT AID

The Department of Transportation Planning and Englneering is extremely active in research on a wide varie-
ty of transportation related topics. All research activities are housed in the Transportation Training and Fesearch Center (TTRC), a separate research unit of Polytechnic, integrally associated with the department. Many of the research contracts and grants handled by TTRC provide for the involvement of students and research fellows. These fellowships will normally provide for full tuition plus a monthly stipend. Research fellows normally have a commitment of 20 hours per week of effort for the period of their appointments. Students wishing more information on research fellowships should write to: Professor Roger P. Roess, Administrative Officer, Department of Transportation Planning and Engineering, Polytechnic Institute of New York, 333 Jay Street, Brooklyn, New York 11201.
Depending upon the source of funding, some fellow. ships may be restricted to U.S. citizens. Fellowships are awarded on the basis of merit, not need, and require a strong sense of commitment on the part of the student to the completion of the research with which they are associated.

In addition to full fellowships, the Polytechnic offers a limited number of tuition-remission awards in the amount of $1 / 2$ of the tuition. Students receiving such assistance are responsible for the remaining tuition and their living expenses. They are normally required to commit 5 hours per week to departmental activities. One-half tuition scholarships are applied for in the same way as research fellowships, as described above.

ADVISING

In any graduate program, the relationship between the student and adviser is an important one. It is the academic adviser who will assist the student in selecting courses, and give guidance in all academic matters. The adviser also maintains a check on the student's progress, and makes recommendations where problems arise.

Shortly after acceptance into the transportation program, each student is asked to select an area of special interest. This is in no way binding, nor does it commit the student to a particular course of study, but it does help us in the assignment of the most appropriate academic adviser in each case.

The students should meet with their adviser prior to each registration, and at any other time when they desire advice or consultation. The academic adviser must formally approve the student's course selections prior to registration. The academic adviser also handles requests for waiver of certain degree requirements, such as required courses. Such waivers must be approved in writing by the academic adviser and the instructor of the required course, and must be entered into the student's departmental file. When such waivers are granted, the student may be required to take another specific course in its place, or may be permitted to select an additional elective.

Whan a student registers for any guided study activity (readings, project, thesis, dissertation), he or she is also assigned an adviser for each such activity. This
may or may not be the same as the academic adviser, depending upon the subject being studied. In order to register for a guided studies activity, the students must have submitted a written proposal of their topic to an appropriate adviser and have the adviser's written approval. Doctoral students, in addition, are not permitted to register for dissertation until they have passed the Ph.D. Qualifying Examination.

Students studying under a research feilowship appointment will be assigned a research adviser, who is normally the principal investigator of the project which funds their fellowship. In some cases, the same faculty member will often act as the academic adviser. Whils the adviser's function is to consult with and give advice to the student, it is the student's responsibility to ensure that the requirements are fulfilled and submit all proper forms and applications when necessary.

FACILITHES

In addition to the regular Polytechnic facilities, including the Spicer Library and the IBM 360/65 computer and support equipment, the following department facilties are available.

Departmental Library-The department maintains a small library collection which includes research reports and other technical documents not normally retained by the main library, as welf as duplicates of key perlodicals also held in the Spicer Library. In addition, the departmental library is a depository for transporta-tion-related publications of the National Technical Information Service. The library is available to students as a reference and limited lending facility.

Computer Center-The department and its students have available a computer center well suited to their academic, research and administrative needs. The computer facility consists of an IBM $360 / 65$ with $1,000,000$ bytes of core memory, seven 3330 -type tape drives holding upwards of $700,000,000$ bytes of information, four magnetic tape drives, two card readers and two 100 -line-per-minute printers. Persons using the center's batch-processing capability may use languages such as Fortran IV, PU1, WATFIV, PLAGQ, ICES, SIMSCRIPT, GDSS, CSMP, SPSS and many others. in addition, the department has active a complete battery of transportatlon plannłng and traffic engineering computer packages, including the FHWA and UMTA (UTPS) programs. The department also has available its own APPLE computer for research and academic applicatlons. Also available are two videotepe cameras and monitors for automated data collection.

Student Study Hall-The department maintains its own student study facility with locked file drawers, which is available to all full-time students and many part-time students. It provides a place for students to work either together or in groups, and a facility where books and other possessions may be safely kept.

UNDERGRADUATE COURSES

The department offers a limited number of undergraduate courses as electives for students in the various undergraduate programs at Polytechnic. These may not be taken for graduate credit by students of the Department of Transportation Planning and Engineering.

TR 380 Traffic Planning and Operations 3:0:3
An introductory course in the development and use of traffic engineering techniques to aid in the planning, functional design and control of highway and street systems. Emphasis on practical applications. Prerequisite: junior slatus.

TR 381 Transportation Models
3:0:3
Introductory course in modeling for transportation planning and engineering. Emphasis on planning process and public transit. Modeling of travel demand, route selection and system evaluation. Emphasis on model-building and applications. Group project required. Prerequisite: funior status.

TR 382 Pubile Transportation Technology and Oparations

3:0:3
Public transportation systems, their design and operation. Physical and hardware considerations such as rail vehicles, station design, control systems. Service characteristics: express bus, local bus, commuter rail, rail rapid transit, demand actuated transit, etc. Operational and planning aspects: scheduling, fares, labor relations, etc. Prerequisite: junior status.

GRADUATE COURSES

Graduate courses are grouped into major specialty areas of transportation planning and engineering. These groupings are intended to aid students in their course selection, which is subject to the approval of the academic adviser.

TRANSPORTATION PLANNING

TR 600 Transportation Studles and

 Characterlstics21/2:0.3 An introductory course in travel demand characteristics, transportation systems characteristics and data collection for transportation studies. Data acquisition techniques for major transportation planning studies as well as for smallscale projects are discussed.

TR 801 Travel Demand Forecasting 212:0:3
Theory and applications of travel forecasting methods to predict the amount and nature of travel on transportation systems. Emphasis on UMTA transportation planning system models. Prerequlsite: MA 551 or equivalent.

Also listed under CE 804

TR 602 Uban Transportation Planning $\quad 21 / 2: 0: 3$
The course is structured to provide a comprehensive treatment of transportation system planning from the regional to the tocal level. Problem identification; issues and needs related to the planning, design and operations of transportation systems. Evaluation of transportation system performance and impacts. Prerequislte: TR 601 or equivalent.

TR 603 Computer Packages in Transportation

 and Traffle Pianning 21/2:0:3 The course Introduces the atudent to a range of computer programs avallable for use in transportation and traffic planning.Major emphasis is given to understanding the capabilities of the FHWA and UMTA (UTPS) computer packages, which are widely used. Students are introduced to these tools through computer-based problem solving as well as manual soiutions, where practical. Prerequisites: TR 601 and TR 701 or equivalent.

TR 629 Transportation Workshop

0:5:3
Comprehensive projects utilizing basic fundamentais from courses taken or concurrently taken in the M.S. program. Profects assigned on an individual or team basis depending on the scope. Princtples and methods of technical report writing. Prerequisites: TR 601 and TR 701 or equivalent.

URBAN AND REGIONAL PLANNING

$\begin{array}{ll}\text { TR } 630 & \begin{array}{l}\text { Principles of Urban and } \\ \text { Regional Planning }\end{array} \quad 21 / 2: 0: 3\end{array}$
A survey of the contemporary theory and methods of the planning function.
Also listed under CE 810

TR 631 Methods of Urtan and Regional

 Analysis in Planning$21 / 2 \cdot 0 \cdot 3$
A course in format methods of analysis of the major components of comprehensive planning. Population, economic activity and land use, and their interretationships. The theoretical exposition is supplemented by iltustrative practical applications.

TR 632 Ubran and Regional Sclence

 in Transportation21/2:0:3
An examination of the structure of urban and regional systems and the interrelationships between their components, including transportation and their evolution. The course builds on and utilizes the analytical tools deveioped in TR631. Prerequisites: MA 551 and TR 631 or equivaient.

TR 840 Environmental Analysis of Transportation Projects

21/2.0:3 Methods and practices for forecasting, identifying, measuring, analyzing and preventing or tempering the impacts of effects of transportation and other facilities, including air, noise, water and other ecological impacts, as well as cornmunity, psychological and other social impacts.

TR 841 Environmental Law and Technology $\quad 2^{1 / 2,003}$ Investigation of current crises involving the environment and its relationship to transportation technology. Subject matter has been specially developed to cover case law, legislative history, and economic and political issues concerning technology and the environment. Subjects of study include landuse planning, conservation aesthetics, regulatory control, transportatlon and related pollution of all forms. Student projects shall be required. Pterequisite: adviser's approval.
Johitily offered with the Brooklyn Law School.

PUBLIC TRANSPORTATION PLANNING, OPERATIONS AND TECHNOLOGY

TR 860 Urban Public Tranaportation

21/2:0:3
Characterlstics of urban transportation systems. Compositon of the transit industry and its structure. Planning, design, operations and management of public transportation modes.

Th 681 Intercity Passenger and Frelght Transportation

$21 / 2,0=3$
Revlew of past and present operations, financial position and transportation role of each of the intercity passenger and freight modes in the United States with foreign comparisons.

History of each mode is presented, inciuding the economic, technological and political tactors that caused these modes to prosper (and decline). The role of government regulatory and fiscal agencies. Economic efficiency of government actions, the methods of "shared cost" estimation, and related rate setting, and intra- and intermodal competitive fortes are analyzed.

TR 662 Transportation in Small
 Towns and Rural Areas

$21 / 2003$
The need for rural transit services, characteristics of service users, methods for estimating demand, range of services that can be provided, insitutuional framework of rural transit, vehicle and vehicle maintenance. Prerequisite: TR 601 or equivalent.

TR 685 Design of Rall Facillties
$21 / 2: 0.3$
The course deals with the design of systems for moving passengers and freight on rails. It involves roadbed, track, alignment, yards, station, signals communlcations and protection devices. The course also devotes several lectures to design of light-rall transit facilities.

TR 670 Planning and Dosign of Terminals

21/20:3
An introductory course of passenger and freight terminals with emphasis on the system description of these facilities. Land, marine and air terminails are discussed. Mothods are discussed for determining the level of service for pedestrian flows, servce times for passengers boarding and alighting, transit vehicies and simulation methods for transit terminals.

Also listed under CE 840

TR 671 Alport Planning and Design 21/2:00:3

Techniques for forecasting air passenger traffic, aircraft operations at commercial and general aviation facifities. Principles and practices for the planning and design of terminal facilities, ground transportation systems, parking facilities, runways and navigational aids. Airport site selection, configuration and economics.
Also llsted under CE 871

HIGHWAY AND TRAFFIC ENGINEERING

TR 701 Traffic Control, Operations

 and Management21/200:3
The traftic stream is comprised of automobiles, commercial vehicles, buses, pedestrians and other elements. The operation and control of this stream is treated on two levels: (1) overall ar-ticutation-Transportation Systems Management (TSM), and (2) the specifics of each component user and facilly. Intersections, arterials, networks, freeways and traffic cortidors are considered. Signal timing and coordination, over-saturated controf, detectorization and computer applications are taught.

TR 703 Traffic Studies

21/2:033
Techniques for collection of traffic data and information: speed, travel time, volume, orgin-destination, parking, accidents, etc. Analysis and interpretation of results. Corrective actions and program formulation based on study results. Pierequisites: MA 551 and TR 701 or equivalent.

Also listed under CE 805

TR 704 Traffic Capacity and Dealgn 21/x:0:3
The use of highway capacity analysis techniques in design, planning and operational analysis is treated. Highway Capacity Manual methods as well as foreign techniques and recent research developments are discussed and illustrated. Functional design of freeways, arterials, streets and rural highways is covered.
Also Ilsted under CE 808

TR: 10 Design of Traffic Facillitios $\quad 21 / 2: 0: 3$
Presents functional and preliminary design principles and analyses for freeways and arterials. Interchange design for freway facilities and design of at-grade intersections, using principles of channelization. Design of parking garages and parking lots.
Also listed under CE 821

TR 715 Urban Goods Movement
 21/2:0:3

A description of urban goods movement, primarily by truck, and its effect on urban mobility. Includes regulatory and institutional framework, freight demand modeling, spatial requirements at terminais and In the urban area, rail and marine terminals, and the terminalistreet interface.

TR 720 Fexible Pavements: Design and Evaluation

 21:3Design and construction of flexible highway pavements, inciuding road-mix, plant-mix and high-type bituminous pavements. Pavement performance and evatuation, Laboratory tests of bituminous materials and mixtures, including Marshali, Hubbard-Field and Hveem stability tests. Viscosity of capillary viscosimeter. Prerequisite: CE 351 or equivalent.
Also listed under CE 801
TR 721 Rigld Pavements: Design and Evaluation 2:1:3 Design and construction of rigid and airport pavements. Pavement performance and evaluation. Laboratory tests of plain and reinforced concrete pavements. Nondestructive testing techniques. Prerequisites: CE 351 and CE 252 or equivalent.
Also listed under CE 802

TRANSPORTATION ECONOMICS AND MANAGEMENT

TR 750 Traneportation Economics
$21 / 2003$
A brief review of the principles and concepts of engineering economic analysis and a thorough application of these principles to decision-making in the transportation sector; methods for estimation of capital, operating and direct-user costs in transportation; benefit concepts, and eatimation of benefits, indirect elfects; ; ransportation finance and taxation: concepts of pubitic finance and equity in taxation.
Also listed under CE 812

TR 751 Transportation Finance

2 $1 / 2$:0:3
Material is approached from a public finance perspective, including a review of those economic theories and analylical techniques that are of particular relevance to transportation. Special attention is given to such areas as (a) the equity vs. efficiency queation in transport finance (b) general vs. earmarked revenue methods (c) the valid (and invalid) used of cost-benefit and cost-effectiveness studies and (d) peak load (marginal cost) pricing.

Also listed under MG $\mathbf{8 5 3}$

TR 752 Analysis of Transportation Markets 21/2.0:3 Application of the precepts of marketing to public and private transportation operations. Basic market structure of major modes Is reviewed to demonstrate how gaining and using market data can increase efficiency and profitability operations. Attention is given to (a) how factors that affect modal cholce are detemined and (b) how this information can be integrated into a "marketing plan" that includes service, pricing and promotional aspects. Case studies.
Also llated under MG 855
TR 755 Legal and Regulatory Aspects of Transportation

21/2:0:3
An in-depth treatment of the origins, causes and effects of regulation on transportation and society in the U.S. Economic
and constitutional bases for transportation regulation. The legal basis, structure and function of federal, state and local regulatory bodies and their interaction with transportation in. dustries. Current controversies concerning the deregulation of sectors of the transportation industry.

Also listed under MG 852

TR 756 Behavioral and Sociological Aspects

 of Transportation21/2:0:3
Behavioral analysis of transportation decision-making and travel characteristics. Sociological factors involved in travel decisions-crime, social isolation, comfort and convenience. Also listed under MG 856 and SS 915

TR 757 Transportation Manegement

21/2.0.3
Management problems in the transportation sector, discussion of various types and forms of transportation organizations planning organizations, operators, consulting firms, etc.-and treatment of organizational problems unique to each. Private vs. public transportation operators and agencies. Public authorities: legal basis, structure, purpose. Prerequisites: MG 601 and TR 660, or equivalent or adviser's approval.
Also listed under MG 857

TR 756 Transportation Palicy and Decision-making

21/2:0:3
A high-level treatment of policy formulation and decisionmaking in the transportation industry on several levels: federal, state and local policy, individual operating policies. Course uses an intensive case-study approach in a seminar or discus-sion-format. Emphasis is on mass transit operations. Prerequisite: adviser's approval.
Also listed under MG 858

REGIONAL AND TRANSPORTATION DEVELOPMENT IN DEVELOPING COUNTRIES

TR 833 Economic Analysis of Transportation Projects In Developing Countries
 21/2:0:3

Principles of economic engineering. Methods of empirical analysis for transportation projects in developing countrles. Role of major transportation projects in economic development. Quantitative techniques for transportation decisionmaking in developing economies.

TR 834 Financing Transportation Projects

in Developing Countries $21 / 2,0.3$
Domestic financing mechanisms for funding of transportation projects in developing economies. Available international sources of economic assistance. Impacts of monetary arrangements and effects of exchange-rate fluctuations on projects cost. Role of users' charges to finance transportation projects. Project cost analysis and role of government actions in wage and price setting. Private sector role in project financing.

TR 880 Case Studles in Reglonal

Transport Development
11/4:11/4:3
Comprehensive projects utilizing basic fundamentals from courses taken or concurrently taken in the program. Such case studies are developed based on past and/or ongoing projects undertaken in developing countries. Assignments are on an in* dividual or team basis depending on the scope. Prerequisites: TR 600, TR 601 and TR 704 or equivalent.

TA 881 Design and Construction of Roads

in Developing Countries
21/2:0:3
Introduction to functional and preliminary design principles for freeways and arterials. Low-volume road technotogy. Design, construction and maintenance of roads in rural areas of LDCs. Criteria for upgrading earth roads to gravel roads, and unpaved roads to paved roads. Geometric design for unpaved roads. Cri-
teria for seiecting one vs. two lane roads. Low-cost water crossings. Labor intensive technlques for construction and maintenance. Inventory of material resources.

TR 882 Construction of Transportation Projects In Developing Countries
 21/2:0:3

Management problems unique to construction of transportation projects in developing countries, including licensing, bonding, insurance, employee relations, etc. The planning, scheduting and progesess control of projects with emphasis on critical path methods and PERT. Applicatlon of accounting data for decisions on pricing, bidding analysis and feedback reporting for cost control. Principles of contract law and legal problems in preparing and administering construction contracts.

TRANSPORTATION SAFETY AND OTHER SPECIAL TOPICS

TR 830 Energy in the Tramaportation Sector 21/2:0:3 Transportation consumes about 25 percent of all energy. It is necessary to consider the variety of sources, transportation modes and travel needs. Total energy, not just propulsion energy is addressed. Three prime areas are the motor vehicle, programs and policies, and public transportation. Technology, costs and interactions are noted. Developing engines, motors, alternative fuels and the electric vehicle are reviewed. Transport of energy itself is studied.

TR845 Tectmiquas in Transportation Analysis 21/2:0:3 Analytic techniques are introduced on three levels: (1) basic concepts, (2) case studies and (3) review of literature. Material covered includes: survey design and interpretation, use of simulators in transportation, construction and use of deterministic models for insight, statistical models, introduction to queuing and tinear programming, introduction to Deiphi Technique and cost-utility. Course emphasizes the modeling concept and its application. Prerequisite: MA 551 or equivalent.

TR 860-861 Sefected Toplcs in

 Transportation I, IIeach $21 / 2.00: 3$
These courses are utilized for the periodic presentation of topical material of current interest. Some recent topics presented as Selected Topics courses are: decision-making in transportation, computer packages in transportation, transportation systerns salety and others. Some of these have been added to the regular curriculum because of their popularity as Selected Topics offerings. Prerequisite: adviser's approval.

TR 884 Transportation Safety
21/2:0:3
Comparative revlew of history and current practices in safety of all transportation modes: land, sea and air. Development of govemment participation end regulation. Analysis of related approachea in differing modes for reducing accidents and attenuating accident effects; lessons to be learned with applicationa from one mode to another. Sefety promotion and educational activities. The economics of safety. Prerequisite: TR 600 or equivalent.

TR 885 Highway Trutfic Safety
$21 / 003$
Methods used in the achievement of lower levela of highway traffic accident occurrence and accident severity, with concentration on proved, practical approaches based on sound engineering principles. Application of principles to real-life sltuationa. Prerequisite: TR 701 or equivalent.

TR 68 Traneportation Syatem Safety
$21 / 2123$
An introductory course in tranaportation systern aafety and its applicability to the transportatlon Industry. Deacription of menagerial and analytic techniquea to be ueed in conjunction with system sefety analyses. Safety programs, management, planning and organlzation. Intermodal interface safety consideration. Safety measurement criterla. Measurement of performance. Evaluatlon of safety programs.

GUIDED STUDIES

TR $801-602$ Floadngs in Transportation
21/2013
Study of special problems in transportation under the direct supervision of one or more members of the faculty. Prerequlsite: adviser's approval.

TR 940 Jolnt Project or Intemship in

Transportation Management
oach 3 unita
An independent project or internship in transportation management for students enrolled in the joint M.S. degree program. PTe requisites: degree status and adviser's approval.
Also listed under MG 940
TR $951-952$ Sembnar In Tranaportation I, il
ne
Presentations by guest speakers on relevant topics In transportation. Presentations and discussion of on-going research by course participants and faculty. Required of all full-time degree students in the program, Prerequisite: adviser's approval.

TR 982 Master's Profect or Internship in Traneportation

each 3 unita
An independent project, or internship with a relevant transportation agency, leading to a report demonstrating the student's professional competence. Students are examined orally and must submit an acceptable written report (unbound). Prerequisites: degree status and adviser's approval.

TR 997 Thesle for the Degree of
 Master of Sclence

esch 3 urit to Continuation of project work, initiated in TR 962, or orlginal research of sufficlent comprehensiveness for properly motivated students. Prerequisites: degree status and adviser's approval.

TR 988 Engineering Profect
each 3 unita
A comprehensive individual project, usually in the form of a comprehensive engineering study and analysis, a functional design project or controlfoperations systern design. Prerequisites: degree status and adviser's approval.

TR 999 Diseertation for the Degree of Doctor of Philosophy

esch 3 unlts An original investigation embodying the results of comprehensive research in a specific area of transportation. Dissertation must be worthy of publication in a recognized scientific or engineering journal. The student is required to take an oral examination on the subject of the dlasertation and on related topics. Prerequisites: degree status, passage of Ph.D. qualifying examination end adviser's approval.

FACULTY

Louis J. Pignataro, Professor, Head of Transportation Planning and Engineering and Director of Transportation Training and Research Center
B.C.E., Polytechnic Institute of Brooklyn; M.S., Colurnbia University; Dr.Tech.S., Technical University of Graz (Austria)
Traffic engineering, transportation economics, public transportation, transportation and energy

Edmund J. Cantilli, Professor of Transportation Planning

B.A., B.S.C.E., Columbia University; Cert. in Highway

Traffic Engineering, Yale University; Ph.D., Polytechnic Institute of Brooklyn
Transportation safety, environmental impacts of transportation, urban planning, pedestrian and bicycle planning

William R. McShane, Professor of Transportation and System Engineering and Associate Director of Transportation Training and Research Center B.E.E., Manhattan College; M.S., Ph.D., Polytechnic Institute of Brooklyn
Transportation models, traffic control and operations, transportation systems management, transportation noise, computer applications, transportation and energy

John C. Falcocchio, Associate Professor of Transportation Engineering
B.S.C.E., M.S., Ph.D., Polytechnic Institute of Brooklyn Transportation planning, public transportation, transportation for disadvantaged groups

Phillip A. Habib, Associate Professor of Transportation Engineering
B.E, CCNY; M.S., Ph.D., Polytechnic Institute of Brooklyn
Goods movement, highway design, highway planning, transportation planning

Roger P. Roess, Associate Professor of Transportation Engineering and Administrative Officer
B.S., M.S., Ph.D., Polytechnic Institute of Brooklyn Traffic capacity and design, public transportation, transportation economics, traffic engineering

Willam H. Crowell, Assistant Professor of Transportation Economics
B.S., Boston College; M.A., Ph.D., New York Universlty Transportation economics and finance, planning, transportation and energy

ADJUNCT FACULTY

Joseph S. Kaming, Adjunct Professor

B.S., Massachusetts Institute of Technology; M.S., Rensselaer Polytechnic Institute; LL.B., Columbia University
Transportation law, transportation regulation, law and technology

Walter H. Kraft, Adjunct Professor
B.S., M.S., Newark College of Engineering; Dr.Eng.Sc., New Jersey Institute of Technology
Transportation ferminals, design of facilities
William S. Allison, Adjunct Professor
A.B., Williams College; M.B.A., Harvard University

Transportation policy and decision-making
Martin F. Husa, Lecturer
B.S.C.E., University of Maryland; M.S., Ph.D., Polytechnic institute of New York Design of rail systems, public transportation, urban planning

Harry Mortkowitz, Lecturer
B.S., Florida Institute of Technology

Air transportation, aimport planning and design
Paul J. Menaker, Lecturer
B.S., M.S.T.P., Ph.D., Polytechnic Institute of New York Computer packages, transportation system planning

THE CORPORATION

Chairman

Joseph J. Jacobs, Chairman of the Board, Jacobs Engineering Group, inc.

Vice Chaimen

William F, May, Retired Chairman and Chief Executive Officer, American Can Company
Clarence F. Silieck, Vice President, C. J. Osborn Chemicals, inc.

Sidney G. Albert, President, Albert Pipe Supply Company
Donald M. Alstadt, President, Lord Corporation
David Baclini, President, David Baclini, inc.
Mark H. Berger, Esq., Mark H. Berger, P.C.
Jeremiah B. Bloom, Esq., Bloom Epstein, Wayne, Reiss and Milner Joseph D. Brown, Retired President, Poloron Products, inc.
Robert P. Brown, Retired
Harry W. Buchanan, President, Virginia Chemicals, inc.
George Bugliarello, President, Polytechnic institute of New York
Vincent A. Calarco, President, Uniroyal Chemical Company William J. Catacosinos, Chairman and Chief Executive, Applied Digital Data Systems, inc.
Donaid M. Cox, Senior Vice President, Exxon Corporation
David Dibner, Chairman of the Board, Burndy Corporation
Winfield Fromm, Vice President, instruments and Systems Operations, Eaton Corporation

Joseph G. Gavin, Jr., President, Grumman Corporation
Paul Hallingby, Jr., Bear, Stearns \& Company
Norman Hascoe, President, SemiAlloys inc.
Fred Heinzelman, Jr., President, Fred Heinzeiman \& Sons
Frank G. Hickey, Chairman, President and Chief Executive Officer, General instrument Corporation
Harmon F. Hoffmann, President,
Ryder Truck Rentals, Pyder Systems, inc.
Arthur J. Keenan, Vice President, Business Markets, New York Telephone Company
Koji Kobayashi, Chairman of the Board and Chief Executive Officer, Nippon Electric Company, Ltd.
Richard Laster, Executive Vice President, General Foods Corporation Gerald D. Laubach, President, Pfizer inc.
William E. Leistner, Partner, Phoenix Chemical Company
Stephen L Levy, Senior Vice President, Motorola, Inc.
Eugene H. Luntey, President,
Brooklyn Union Gas Company
David L. Mitchell, Managing Director, Shearson Loeb Rhoades, inc.
Stanley M. Nisenson, Senior Staff Engineer, New York Telephone Company

Donald D. Pascal, Chairman,
Executive Committee, National Starch \& Chemical Corporation

Leonard F.C. Reichle, Executive Vice President, Ebasco Services, Inc.
Louis N. Rowley, Jr., Consulting Editor, Power \& Electrical World, McGraw-Hill Publications

Robert Sanator, Senior Vice President, Fairchild Republic Company
Harrison V. Smith, Chairman, Irust and Investment Committee, Morgan Guaranty Trust Company
Paul Soros, President, Soros
Associates intemational, inc.
Charles Strang, President, Outboard Marine Corporation
Jerry M. Sudarsky, President, J M S Associates
Harry C. Wechsler, President, Beatrice Chemical, Division of Beatrice Foods Company
David Westermann, Esq.
George Wilcox, Director,
Westinghouse Electric Corporation

Trustees Emeriti

Benjamin Adler, Consulting Engineer
Preston R. Bassett, Retired President, Sperry Gyroscope Company
George F. Habach, Management Consultant
Marvin Lee, Retired President, Lifetime Consultant, Bumdy Corporation
Robert E Lewis, Retired Chairman Executive Committee, Perkin Elmer Corporation
Herman F. Mark, Dean Emeritus, Polytechnic institute of New York
Emst Weber, President Emeritus, Polytechnic Institute of New York

THE ADMINISTRATION

George Bugliarelio, Dr.Ing., Sc.D., President
Eleanor Adams, B.A. Executive Assistant to the President
Gloria Kaplan, Executive Secretary
Ernst Weber, Dr.Phis., D.Techn., Sc.D.Eng., President Emeritus

ACADEMIC ADMINISTRATION

Albert Goid, Ph.D., Provost
Robert J. Maciag, M.S., Deputy Provost
Helen Warren, Special Assistant, Office of Provost
James J. Conti, D.Ch.E., Vice President for Educational Development and Director of the Long isiand Campus Stanley Preiser, Ph.D., Dean of the Westchester Center
Bernard J. Butkin, Ph.D., Dean of Arts and Sciences
Alice Blanchard, Executive Assistant to the Dean of Arts and Sciences
Sidney S. Shamis, M.S., Acting Dean of Engineering
James M. McCarthy, J.D., Executive Assistant to Dean of Engineering
Norbert Hauser, Eng.Sc.D., Dean of Management
Anthony B. Giordano, D.E.E., Dean of Graduate Studies
Kenneth Danielsen, Director of Computer Activities
Robert J. Cresci, Ph.D., Director, Aerodynamics Laboratory
Paut R. DeCicco, M.C.E., Director, Center for Urban Environinental Studies
Herbert Morawetz, Ph.D., Director, Polymer Research Institute
Arthur A. Otiner, Ph.D., Director, Microwave Research institute
Louis J. Pignataro, Dr.Tech.Sc., Director, Transporlation Training and Research Center

Student Life

Edward A. DeCarbo, Jr., Ph.D., Dean of Student Life
Myma Singer, Executive Assistant to Dean
Robert H. Isaacs, M.Ed., Associate Dean of Student Life
Harvey R. Delaney, Jr., B.S., Coordinator of Student Activities and Director of the Student Center
Suzanne Singer, International Student Adviser

AdmLasions and Financial Ald

Elizabeth Shatp Ross, B.A., Director of Admissions/Financial Aid Cynthia Batley, M.S., Director of Financial Aid
G. Peter Cooney, M.A., Assistant Director of Admissions

Carol A. Fazio, M.S., Assistant Director of Admissions, Long Island Center
Christine Stefano, B.A., Assistant Director for Transfer Admissions
Abraham I. Goodman, M.A., Admissions Consultant, Long Isiand Center
Brian A. Ameikin, B.A., Financiai Aid Counselor
M. Hillary O'Rourke, M.A., International Student Admissions Counselor

Career Services/Cooperative Educatlon

Emest B. Racz, Ed.D., Director of Career Services and Cooperative Education
Irene Dorzback, M.A., Assistant Director of Career Services and Cooperative Education
Arthur L. Rucks, M.A., Coordinator, Part-time job development
Sandra P. Santana, B.A., Coordinator, Cooperative Education

Registrar

Janyce G. Wolf, M.S., Registrar
Marcia Moaltem, B.A., Assistant Registrar
Gary A. Kunz, Office Manager

Libraries

Leonard Cohan, M.S. in L.S., Director of Litbraries and Associate Professor of Social Sciences
Zena Jacobs, M.L.S., Head, Reference Department
James Jarman, M.L.S., Head, Order Department
Vera Marek, M.L.S., Head, Catalog Department
Liliana Middleton, M.L.S., Head, Circulation Department Lorraine Schein, M.S. in L.S., Head, Long Island Center Library
Hana Stranska, M.L.S., Reference Librarian
Heather Walters, B.S., Head, Seriais/Documents Department

ADMINISTRATION AND FINANCE

Seymour Scher, Ph.D., Vice President for Administration and Finance
John Rorer, M.P.A., Assistant Vice President for Administration and Finance
Thornas Ford, M.A.; M.I.L.R., Comptroller
Robert E Hawks, M.A., M.P.A., Budget Director
Frances Temchin, M.A., Personnel Officer
Lyle Loper, B.B.A., Systems Manager

Administratlve Services

Catharine Sharp, Director of Administrative Services
Richard Urevich, Supervisor, Buildings and Grounds
Charles Wildermuth, Supervisor, Print and Mail Services
Elaine Cummings, Word Processing
Development
Joseph R. Burkart, B.A., Vice President for Development Raymond C. Soldavin, B.A., Director of Development Barbara L. Bender, Director of Special Projects Richard Gerber, B.A., Director of Annual Fund
Arthur L. Rossoff, M.E.E., Assistant to the President, Associate Director of Development

Public Relations

William P. McDonald, M.S.Ed., Director of Public Relations
Peter Kaufman, M.A., News Writer
Loretta Lawrence Keane, B.A., Director of Publications
Carol Mennella, Program Coordinator

The Alumni Association

Robert E. Schuck, M.A., Executive Director
Officers for 1980-81
Sidney A. Savitt '45, President
Henry Bachman '51, Vice President
Dorothy Pinkert '52, Vice President
Harold L. Brownman '44, Vice President
Franklin Blecher ' 49 , Secretary
Charles F. Wagner '65, Treasurer

GENERAL INDEX

Academic Integrity	34
Academic Policies	29
Academic Standing	32
Activities, Student	38
Add/Drop Information	20,29
Administration	263
Administrative Actions	33
Admissions	12
Graduate	14
Procedures, General	12
Undergraduate, Day	12
Undergraduate, Evening	12
Advanced Placement	13
Advising	35
Aeronautics and Astronautics	184
Aerospace Engineering	180
Aerospace Research Laboratories	11
Air Resources Engineering	71
Algebra and Number Theory	175
Alumni	8
American Literature	125
Analysis	174
Analytical Chemistry	65
Application for Degree	26
Applied Mathematics	169,215
Applied Statistics	170, 171
Army Officer Training Program	202
Auditing Courses	30
Bachelor's Degree Requirements	23
Behavioral Science	215, 234, 236
Biochemistry	60,65
Bioengineering, Department of	44
Bioengineering/Electrical Engineering	96
Biology	149
Biosystems Concentration	49
Brooklyn Campus	9
Campus Life	37
Career Services	36
Center for Urban Environmental Studies	10
Certificate Programs	25
Change of Department	32
Chemical Engineering, Depariment of	48
Chemical Physics, Department of	57
Chemical Physics	57
Chemistry, Department of	59
Civil and Environmental Engineering, Dept of	68
Class Standing	29
Clubs	38
Communications	124
Communications/Information Transmission	101
Computer Applications Concentration	157
Computer Center	10
Computer Engineering Option	94, 96
Computer Science, Division of	81
Conduct, Rules of	37
Construction Management	157
Control and Instrumentation	100
Control Systems	103,215
Cooperative Education Program	27,90
Corporation	262
Counseling	35
Course Descriptions, A Guide to	43
Credit by Examination	30

Credits Permitted Curricula	29 27
Deferred Payment of Education Costs	15
Degree, Application for	26
Degree Requirements	23
Disqualification	33
Dissertations	25
Doctor's Degree Requirements	24
Dropped Courses	20,30
Economic Systems	114,216
Economics	215, 234, 236
Economics and Finance	157
Education, Mathematics	171
Electric Power	101
Electrical Engineering, Deparment of	92
Electromagnetic Fields	101
Electronic Circuit Analysis and Design	100
Electronic Circuits and Devices	104
Electronic Materials Science	101
Electronics and Networks	95
Electronics and Waves	95
Electro-Optics	105
Electrophysics	93,97
Electrophysics, Department of	112
Energy Engineering and Policy	114
Energy Management	115,157
Energy Program	114
Engineer Degree Requirements	24
Engineering Metailurgy	195
English	120, 123
Environmental Engineering	71
Environmental Health Science	71
Environmental Planning	71
Environmental Psychology	237
Environmental Studies Concentration	50
Fellowships, Assistantships	19
Fields and Waves	95, 106
Financial Aid	15
Financial Reporting	122
Fine Arts	126
Fraternities	38,39
French	127
Geometry	175
Geotechnical Engineering	72
German	128
Grade-Point Average, Computation of	31
Grading, Graduate	31
Graduate Degrees, Candidacy for	25
Graduate Programs	27
Graduation Check List	24
Grants, Student	16
Health Services	38
Higher Education Opportunity Program (HEOP)	13
Highway Engineering	72
History	235
History of Polytechnic	7
History of Science and Technology	234, 236, 237
Honor Societies	39
Housing	38

Power Engineering	93,97, 105
Power Systems and Energy Conversions	95
Premedicine	150
Prizes	34
Probability	215
Probation	33
Professional Societies	38
Psychology	235, 236
Psychology, Environmental	237
Public Administration	206
Public Policy	157
Public Transportation	256
Quantum Electronics	95
Registration Procedure	19
Research Facilities	10
ROTC	17,202
Russian	127
Scholarships	17, 18
Science Reporting	122
Sociai Science Requiremente	23
Social Sciences, Department of	234
Spanish	127
Spectal Services, Office of	35
Speclatized Journalism	120
Statistics	215,246
Statistics, Applied	170
Structural Engineering	71
Student Activities	38
Student Conduct	37
Student Organizetions	39
Student Services	35
Summer Courses	27
System Engineering	247
Systems and Control	94
Teaching Certification	61
Tectinical Wilting	119, 122
Technology Management	157
Thermal/Fluid/Energy OptIon(M/AE)	184
Theses and Dissertations	25
Topology	175
Trade-Magazine Journallsm	122
Traffic Engineering	258
Transcripts	30
Transfer Credit	21,22
Transfer Students	13,21
Transportation in Developing Countries	259
Transportation Economics	250
Transportation Facility Design and Operation	250
Transportation Management	157,249
Transportation Planning	255
Transportation Planning \& Engineering, Dept. of	252
Transportation Safety	256
Transportation Training and Research Center	11
Tuition	4
Tutoring	30
Undergraduate Credits	23,29
Undergraduate Programs	27
Urban Planning	250
Validation Credit	22,30
Veterans	20
Water Quality Engineering	71
Water Pesources and Hydraulic Engineering	71
Westchester Center	9
Withdrawal information	30,31
Women's Programs	36

NOTES

NOTES

NOTES

NOTES

[^0]: *UNIX is a trademark of Bell Laboratories.

[^1]: - Scholarships and Grants-funds awarded to students based on a combination of academic ability and financial need which do not require repayment.
 - Loans-specific sums awarded to students with repayment conditions. Education loans generally have a low interest with extended repayment terms.
 - Employment-part-time and summer jobs either on or off campus.

[^2]: - Brookhaven Labs.

[^3]: - To be chosen from approved courses in chemistry, mathematics and physics in consultation with adviser.
 † Under speciai circumstances, CM 951-2, Experiment Destgn I, ti, may be substituted for the project.
 \ddagger Advised and allowed only for students intending to proceed to the doctorate.

[^4]: *To graduate, the student must demonstrate a knowledge of French, German or Russian equivalent to that of a fourth semester course. This may be done by passing the appropriate course or by passing a special examination edministered by the humanities department.

[^5]: * Offered in the second semester at Farmingdale.
 * Offered in the first semester at Farmingdale.

[^6]: ${ }^{\mathrm{b}} \mathrm{A}$ grade of S (satisfactory) or U (unsatisfactory) will be recorded on the student record upon completion of each course, however the course will not be computed in the Grade Polnt Average (G.P.A.), and is not required for graduation.

[^7]: See footnotes on page 97

[^8]: *Also energy elective

[^9]: -Footnotes are shown after program listing.

[^10]: ${ }^{1}$ All group A courses are required untess they are specifically waived by the adviser because the student either (a) has taken on an equivalent undergraduate or graduate course, or (b) passes a validation examination for the course. Up to three group A courses actually taken may be credited toward the degree requirements; if more than three must be taken, the degree requirements will be increased according. Iy.
 ${ }^{2}$ Only one of each bracketed set of courses will be counted in the group in which it is listed; the other courses may be counted under group D .
 'Group D electives are to be chosen with the adviser's approvai to bring total units to 36 plus any excess of Group A courses beyond 9 units. They may include thesis, additional courses from Groups B and C , or other graduate courses in this or other disciplines.

 Many students are interested in taking management electives. Most MG courses will be approved. However, because of substantal overlap with IE courses, no credit will be given for MG 630, MG 602, or MG 605 .

 - Certain Introductory courses will be waived if the student takes specified advanced courses, tor which full credit will be given. For OR 827: OR 631 and either OR 632 or OR 665 For OR 628: OR 650

[^11]: *See page 143.
 ** Master of science in management (MSM) is recognized, atong with the master of business administration (MBA), by the Graduate Management Admission Council as a graduate professional management degree.

[^12]: *See minor specialty.

[^13]: See footnotes on previous page.
 stechnical Minors-A valuable feature of the mechanical engineering program is availability of technical electives in each of the last four semesters. In consultation with a faculty adviser, the student may construct a minor in numerous and diverse technical areas outside traditional mechanical engineering.

[^14]: *FIth and Sixth years are interchangeable.

[^15]: Either the core courses or the electives must include AM 651-52, Advanced Dynamics I \& II.

[^16]: *The 12 credits of electives taken during the last three years comprise 9 credits of technical electives and 3 credits of free electives.

[^17]: 'Students may substitute IS 140, IS 141 for HU 200, SS 104. Students with strong mathematical backgrounds may subslitute MA 111-MA 114 for MA 101-MA 104. The adviser may approve substitution of another applied statistics course for MA 555.

[^18]: The 42 credits of electives are to be distributed as follows: B credits of courses in operations research and industrial engineering
 13 credits of technical electives: engineering or science.
 12 credits of humanities and social science.
 9 credits of free electives: normally any course that does not duplicate others.

[^19]: *All electives are to be chosen in conference with the graduate adviser.

[^20]: 'History and history of science options may be combined.

